Calculus 1
 👍
 👎
 👁

 👍
 👎

 👍
 👎
Respond to this Question
Similar Questions

math
An open box is made from a rectangular piece of cardboard measuring 16 cm by 10cm. Four equal squares are to be cut from each corner and flaps folded up. Find the length of the side of the square which makes the volume of the box

calculus
By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. If the cardboard is 14 in. long and 6 in. wide, find the dimensions of the box

calculus
7. A cardboard box manufacturer wishes to make open boxes from rectangular pieces of cardboard with dimensions 40 cm by 60 cm by cutting equal squares from the four corners and turning up the sides. Find the length of the side of

Calculus
A box (with no top) is to be constructed from a piece of cardboard of sides A and B by cutting out squares of length h from the corners and folding up the sides. Find the value of h that maximizes the volume of the box if A = 7

Calculus
Squares with sides of length x are cut out of each corner of a rectangular piece of cardboard measuring 3 ft by 4 ft. The resulting piece of cardboard is then folded into a box without a lid. Find the volume of the largest box

Calculus
A box with an open top is to be made from a square piece of cardboard by cutting equal squares from the corners and turning up the sides. If the piece of cardboard measures 12 cm on the side, find the size of the squares that must

math
a 5cm by 5cm square is cut from each corner of a rectangular piece of cardboard.the sides are folded up to make an open box with a maximum volume.if the perimeter of the base is 50cm,what are the dimensions of the box.

Calculus
an open box is made by cutting out squares from the corners of a rectangular piece of cardboard and then turning up the sides. If the piece of cardboard is 12 cm by 24 cm, what are the dimensions of the box that has the largest

Basic Calculus
A piece of cardboard measuring 14 inches by 8 inches is formed into an opentop box by cutting squares with side length x from each corner and folding up the sides. FIND: 1). a formula for the volume of the box in terms of x 2).

Pre Cal 12
A 12cm by 8cm rectangular piece of metal is to be made into an opentop box by cutting a sqaure from corner and folding up the resulting flaps (sides). If the volume of the lidless box is 36 cm what are the integer dimensions of

math
Four corners are cut from a rectangular piece of cardboard that measures 5 ft by 3 ft. The cuts are x feet from the corners, as shown in the figure below. After the cuts are made, the sides of the rectangle are folded to form an

Math
A rectangular piece of cardboard measuring 12 cm by 18 cm is to be made into a box with an open top by cutting equal size squares from each corner and folding up the sides. Let x represent the length of a side of each square in
You can view more similar questions or ask a new question.