# Physics

A block of mass m = 2.4 kg is released from rest at a height of H = 3.0 m on a curved frictionless ramp. At the foot of the ramp is a spring whose spring constant is k = 317.0 N/m. What is the maximum compression of the spring, x?

1. 👍 0
2. 👎 0
3. 👁 191
1. equate PE=spring potential energy (1/2)kx²

1. 👍 0
2. 👎 0

## Similar Questions

1. ### physics

In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the

asked by sweety on March 22, 2009

A 540 g block is released from rest at height h0 above a vertical spring with spring constant k = 320 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 19.8 cm. How much

asked by Fiona on March 16, 2014
3. ### Physics

A 540 g block is released from rest at height h0 above a vertical spring with spring constant k = 320 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 19.8 cm. How much

asked by Fiona on March 16, 2014
4. ### Physics

A 540 g block is released from rest at height h0 above a vertical spring with spring constant k = 320 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 19.8 cm. How much

asked by Riley on March 10, 2014
5. ### physics

In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the

asked by nicks on March 22, 2009
1. ### physics

In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the

asked by sweety on March 22, 2009
2. ### physics

In the Figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.7 kg, and angle è is 26 °. If the blocks are released from rest with the

asked by nirali on March 22, 2009
3. ### Physics

A block of mass m = 2.00 kg is released from rest h = 0.500 m from the surface of a table, at the top of a theta = 30.0° incline. The frictionless incline is fixed on a table of height H = 2.00 m. (a) Determine the acceleration

asked by Edge on February 6, 2016
4. ### physics

A 506 g block is released from rest at height h0 above a vertical spring with spring constant k = 500 N/m and negligible mass. The block sticks to the spring and momentarily stops after compressing the spring 18.4 cm. How much

asked by VitaX on October 16, 2010
5. ### Physics

Review problem. A block of mass m = 2.00 kg is released from rest at h = 0.500 m above the surface of a table, at the top of a theta = 30.0 incline as shown in Figure 3. The frictionless incline is fixed on a table of height H =

asked by Edge on February 9, 2016
6. ### physics

A block of mass 4.253 kg is released on the track at a height 5.52 m above the level surface. It slides down the track and makes a head-on elastic collision with a block of mass 17.012 kg, initially at rest. The acceleration of

asked by paul on October 27, 2010

More Similar Questions