Math

A radioactive substance decays according to the formula
Q(t) = Q0e−kt
where Q(t) denotes the amount of the substance present at time t (measured in years), Q0 denotes the amount of the substance present initially, and k (a positive constant) is the decay constant.
(a) Find the half-life of the substance in terms of k.
(b) Suppose a radioactive substance decays according to the formula
Q(t) = 36e−0.0001074t
How long will it take for the substance to decay to half the original amount? (Round your answer to the nearest whole number.)

asked by Vanessa

Respond to this Question

First Name

Your Response

Similar Questions

  1. Math

    A radioactive substance decays according to the formula Q(t) = Q0e−kt where Q(t) denotes the amount of the substance present at time t (measured in years), Q0 denotes the amount of the substance present initially, and k (a
  2. math

    the amount of radioactive substance prsent at anytime is given by q(t)=Q0e-0.1 How will it take for the radioactive substance x to decay to 30% of its original amount?
  3. algebra

    A radioactive substance decays according to the formula A=A0e^kt where A0 is the initial amount of substance (in grams) A is the amount of substance(in grams) after t years k is a constant The half-life of the substance is 10
  4. calculus

    The rate at which an amount of a radioactive substance decays is modeled by the differential equation dA/dt = kA, where A is the mass in grams, t is the time in years, and k is a constant. Answer the following. a) If a 100-gram
  5. Math algebra

    The radioactive decay of a substance is expressed by A=A^0 e^ -kt, where the initial amount A^0, decays to an amount A after t years. The positive constant k differs for each substance. Strontium 90 decays such that k=.028. Find
  6. math

    The radioactive decay of a substance is expressed by A=A^0 e^ -kt, where the initial amount A^0, decays to an amount A after t years. The positive constant k differs for each substance. Strontium 90 decays such that k=.028. Find
  7. Math

    A radioactive substance decays to the formula N=8e^-0.6t , where N is the number of milligrams present after t hours. Determine the initial amount of the substance to the nearest 10th of an hour, determine the half life of the
  8. Science

    Radioactive substance decays so that after t years, the amount remaining, expressed as a percent of the original amount, is A(t)=100(1.6)^(-t). a) Determine the function A’, which represent the rate of decay of the substance. b)
  9. College Algebra

    A radioactive substance decays in such a way that the amount of mass remaining after t days is given by the function m(t) = 9e−0.012t where m(t) is measured in kilograms. (a) Find the mass at time t = 0.
  10. College Algebra

    A radioactive substance decays in such a way that the amount of mass remaining after t days is given by the function m(t) = 9e−0.012t b) How much of the mass remains after 49 days? (Round your answer to one decimal place.)

More Similar Questions