calculus

Let f be a function defined by f(x)= arctan x/2 + arctan x. the value of f'(0) is?

It's 3/2 but I am not very clear on how to obtain the answer. I changed arctan x/2 into dy/dx=(4-2x)/(4sqrt(4+x^2)) but that's as far as I got. Could you please show me how to solve this problem? I would really appreciate it?

Start with this rule:

d/dx (arctan x)
= 1/(1 +x^2)

d/dx (arctan x/2) = (1/2)/[1 + (x/2)^2]

Evaluate them at x = 0 and add them. You will get 3/2.

  1. 👍 0
  2. 👎 0
  3. 👁 254
asked by Jamie

Respond to this Question

First Name

Your Response

Similar Questions

  1. Calculus

    Note that pi lim arctan(x ) = ---- x -> +oo 2 Now evaluate / pi \ lim |arctan(x ) - -----| x x -> +oo \ 2 / I'm not exactly sure how to attempt it. I have tried h'opital's rule but I don't believe you can use it here. Any help

    asked by Frederique on November 19, 2006
  2. Math

    Arrange these in order from least to greatest: arctan(-sqrt3), arctan 0, arctan(1/2) So far I got the first two values, arctan(-sqrt3), and that's 150 degrees. Arctan 0 would be zero degrees. I'll use just one answer for now, but

    asked by Anonymous on August 13, 2009
  3. precal

    The values of x that are solutions to the equation cos^(2)x=sin2x in the interval [0, pi] are a. arctan(1/2) only b. arctan(1/2) and pi c. arctan(1/2) and 0 d. arctan(1/2) and (pi/2) e. arctan(1/2), o, and (pi/2)

    asked by Carson on March 25, 2013
  4. solving trigonometrical equations

    arctan(tan(2pi/3) thanks. arctan(tan(2pi/3) = -pi/3 since arctan and tan are inverse operations, the solution would be 2pi/3 the number of solutions to arctan(x) is infinite, look at its graph. generally, unless a general solution

    asked by Jen on April 10, 2007
  5. calc

    also: integral of tan^(-1)y dy how is integration of parts used in that? You write: arctan(y)dy = d[y arctan(y)] - y d[arctan(y)] Here we again have used the product rule: d(fg) = f dg + g df You then use that: d[arctan(y)] =

    asked by marsha on May 23, 2007
  6. limiting position of the particle

    A particle moves along the x axis so that its position at any time t>= 0 is given by x = arctan t What is the limiting position of the particle as t approaches infinity? Answer is pi/2 How do I solve this? Thanks a lot. You want

    asked by Jen on October 20, 2006
  7. calculus

    Now we prove Machin's formula using the tangent addition formula: tan(A+B)= tanA+tanB/1-tanAtanB. If A= arctan(120/119) and B= -arctan(1/239), how do you show that arctan(120/119)-arctan(1/239)=arctan1?

    asked by alex on May 23, 2010
  8. Calculus prince@18

    let the function h(x)= (integrand symbol from 2 to x^2)arctan (t) dt. Find h'(x). This question confused me because i know the derivative of an integral is the original function. I just need help with finding the derivative of

    asked by Prince@18 on February 9, 2017
  9. calculus

    h(x)= integral from (1, 1/x) arctan(2t)dt part 1: let U= 1/x and du= ? -> using u=1/x, we can write h(x)= integral from (1, 1/x) arctan (2t)dt as h(u)= integral from (1,u) arctan(2t)dt and h'(u)= arctan (2) Part 2: By the chain

    asked by Anonymous on July 14, 2011
  10. calculus

    h(x)= integral from (1, 1/x) arctan(2t)dt part 1: let U= 1/x and du= ? -> using u=1/x, we can write h(x)= integral from (1, 1/x) arctan (2t)dt as h(u)= integral from (1,u) arctan(2t)dt and h'(u)= arctan (2) Part 2: By the chain

    asked by Anonymous on July 14, 2011

More Similar Questions