physics

posted by Scott

A 3 kg block is attached to an ideal spring with a force constant k=200 N/m. The block is given an initial velocity in the positive direction of magnitude u= 12 m/s and no initial displacement (xi=0). Find a) the amplitude, b) the phase angle, and c) write an equation for the position as a function of time.

  1. kambua ombo

    a) 2m
    b) 43 degrees
    c) s(t)=144t^2+26t+9

Respond to this Question

First Name

Your Answer

Similar Questions

  1. Physics

    I am stumped on this homework problem and would like help at least to get me thinking in the right direction: It is a 2-D problem where a spring "plunger" is being used to propel a block forward. More specifically: the block rests …
  2. Physics

    A block of mass m1 = 4.1 kg rests on a frictionless horizontal surface. A second block of mass m2 = 1.7 kg hangs from an ideal cord of negligible mass that runs over an ideal pulley and then is connected to the first block. The blocks …
  3. physics

    The block in the figure below lies on a horizontal frictionless surface and is attached to the free end of the spring, with a spring constant of 65 N/m. Initially, the spring is at its relaxed length and the block is stationary at …
  4. Physics help please!!!

    A 2.10 kg frictionless block is attached to an ideal spring with force constant 315N/m . Initially the block has velocity -3.75m/s and displacement 0.270m . Find (a) the amplitude of the motion. (b) the maximum acceleration of the …
  5. physics help needed very urgent !!!

    The block in the figure below lies on a horizontal frictionless surface and is attached to the free end of the spring, with a spring constant of 55 N/m. Initially, the spring is at its relaxed length and the block is stationary at …
  6. Physics to be solved

    The block in the figure below lies on a horizontal frictionless surface and is attached to the free end of the spring, with a spring constant of 55 N/m. Initially, the spring is at its relaxed length and the block is stationary at …
  7. physics

    A block of mass m1 = 3.2 kg rests on a frictionless horizontal surface. A second block of mass m2 = 1.9 kg hangs from an ideal cord of negligible mass that runs over an ideal pulley and then is connected to the first block. The blocks …
  8. Physics

    A 2.10 kg frictionless block is attached to an ideal spring with force constant 315N/m . Initially the block has velocity -3.75m/s and displacement 0.270m . Find (a) the amplitude of the motion. (b) the maximum acceleration of the …
  9. Physics

    A 3kg block is attached to an ideal spring with a force constant k = 200N/m. The block is given an initial velocity in the positive direction of magnitude u = 12 m/s and no initial displacement (x o = 0). Find (10 marks) a. The amplitude …
  10. Physics

    A 3kg block is attached to an ideal spring with a force constant k = 200N/m. The block is given an initial velocity in the positive direction of magnitude u = 12 m/s and no initial displacement (x o = 0). Find (10 marks) a. The amplitude …

More Similar Questions