ifcosX+cosY=a and sinX+sinY=b than prove thatsin2X+sin2Y=2ab(1-2/(a^2+b^2)

ab = sinx cosx + sinx cosy + cosx siny + siny cosy

= sin(x+y) + sinx cosx + siny cosy
using your sum/difference formulas,
= sin(x+y) + 1/2 sin2x + 1/2 sin2y
= sin(x+y) + sin(x+y)cos(x-y)
= sin(x+y)(1+cos(x-y))

a^2+b^2 = cos^2x + 2cosx cosy + cos^2y + sin^2x + 2sinx siny + sin^2y
= 2+2cos(x-y)
2/(a^2+b^2) = 1/(1+cos(x-y))
1-2/(a^2+b^2) = cos(x-y)/(1+cos(x-y))

so, using your sum/difference formulas as above,

2ab(1-2/(a^2+b^2)) = 2sin(x+y)cos(x-y)
= sin2x + sin2y

*whew*

not well

not well this problem

To prove that sin2X + sin2Y = 2ab(1 - 2/(a^2 + b^2)), we can use the double angle identity for sine and rewrite sin2X and sin2Y in terms of sinX, sinY, cosX, and cosY.

The double angle identity for sine states that sin(2A) = 2sinAcosA.

We can apply this identity to both sin2X and sin2Y.

1. Starting with sin2X:
sin2X = 2sinXcosX

2. Now, let's rewrite cosX in terms of a and cosY using the given equation:
cosX = a - cosY

3. Plugging in the value of cosX in sin2X:
sin2X = 2sinX(a - cosY)

4. Next, let's move on to sin2Y:
sin2Y = 2sinYcosY

5. Similarly, substitute cosY in terms of a and cosX using the given equation:
cosY = a - cosX

6. Replacing the value of cosY in sin2Y:
sin2Y = 2sinY(a - cosX)

Now, let's expand the right side of the equation we want to prove: 2ab(1 - 2/(a^2 + b^2)).

7. Expanding the term within parentheses:
2ab(1 - 2/(a^2 + b^2)) = 2ab - 4ab/(a^2 + b^2)

Now, we need to prove that sin2X + sin2Y = 2ab - 4ab/(a^2 + b^2).

8. Adding sin2X and sin2Y:
2ab - 4ab/(a^2 + b^2) = 2sinX(a - cosY) + 2sinY(a - cosX)

9. Distributing the terms:
2ab - 4ab/(a^2 + b^2) = 2asinX - 2sinXcosY + 2asinY - 2sinYcosX

10. Combining similar terms:
2ab - 4ab/(a^2 + b^2) = 2a(sinX + sinY) - 2(sinXcosY + sinYcosX)

11. Recall the given equation:
sinX + sinY = b

12. Replacing sinX + sinY with b:
2ab - 4ab/(a^2 + b^2) = 2ab - 2(sinXcosY + sinYcosX)

Now, we need to focus on sinXcosY + sinYcosX and relate it to (a^2 + b^2).

13. Using the identity sinAcosB + sinBcosA = sin(A + B):
sinXcosY + sinYcosX = sin(X + Y)

14. Applying the addition formula for sine, sin(A + B) = sinAcosB + sinBcosA:
sinXcosY + sinYcosX = sin(X + Y) = sin(X)cos(Y) + sin(Y)cos(X)

15. Remember the given equation:
cosX + cosY = a

16. Rearranging the equation:
cosX = a - cosY

17. Substituting cosX in sin(X)cos(Y) + sin(Y)cos(X):
sin(X)cos(Y) + sin(Y)cos(X) = sin(X)(a - cosY) + sin(Y)cos(X)

18. Distributing the terms:
sin(X)cos(Y) + sin(Y)cos(X) = a(sinX) - sinXcosY + sinYcosX

Now, we can relate sin(X)cos(Y) + sin(Y)cos(X) to a and b:

19. Using the given equation:
cosX + cosY = a

20. Rearranging the equation:
cosY = a - cosX

21. Substituting cosY in sin(X)cos(Y) + sin(Y)cos(X):
sin(X)cos(Y) + sin(Y)cos(X) = a(sinX) - sinX(a - cosX) + sinYcosX

22. Simplifying further:
sin(X)cos(Y) + sin(Y)cos(X) = a(sinX) - sinX(a) + sinXcosX + sinYcosX

23. Combining similar terms:
sin(X)cos(Y) + sin(Y)cos(X) = a(sinX + sinY) + (sinX + sinY)cosX

24. Again, using the given equation:
sinX + sinY = b

25. Substituting sinX + sinY with b:
sin(X)cos(Y) + sin(Y)cos(X) = ab + bcosX

Now, let's revisit the equation we obtained earlier:

2ab - 4ab/(a^2 + b^2) = 2ab - 2(sinXcosY + sinYcosX)

We can now substitute sin(X)cos(Y) + sin(Y)cos(X) in this equation:

2ab - 4ab/(a^2 + b^2) = 2ab - 2(ab + bcosX)

Combining similar terms:

2ab - 4ab/(a^2 + b^2) = 2ab - 2ab - 2bcosX

Simplifying further:

2ab - 4ab/(a^2 + b^2) = - 2bcosX

Applying the negation:

-4ab/(a^2 + b^2) = - 2bcosX

Multiplying both sides by -1:

4ab/(a^2 + b^2) = 2bcosX

Now, let's recall the identity sin(2X) = 2sin(X)cos(X):

2sin(X)cos(X) = 4ab/(a^2 + b^2)

Finally, dividing both sides by 2:

sin(2X) = 2ab/(a^2 + b^2)

We have proven that sin(2X) = 2ab/(a^2 + b^2).

Similarly, the same steps can be followed to prove that sin(2Y) = 2ab/(a^2 + b^2).

Therefore, sin2X + sin2Y = 2ab(1 - 2/(a^2 + b^2)) is true.

cosx+cosy=a sinx+siny=b find tha value of sin2x+sin2y=?

2+3