Calculus

posted by Summer

Imagine slicing through a sphere with a plane (sheet of paper). the smaller piece produced is called a radius of the sphere. Its volume is V=(pi)h^2(3r-h)/3, where r is the radius of the sphere and h is the thickness of the cap. find dr/dh for a sphere with a volume of 5pi/3m^3. evaluate the derivative when r=2m and h=1m.

1. Steve

we have

π/3 h^2(3r-h) = 5π/3
3rh^2-h^3 = 5
3h^2 dr/dh + 6rh - 3h^2 = 0
h dr/dh + 2r - h = 0
dr/dh = (h-2r)/h = 1 - 2r/h
...

Similar Questions

1. physics

Two solid spheres A and B are made from the same material. The mass of sphere B is eight times that of sphere A. If the radius of sphere A is 7.50 cm, what is the radius of sphere B?
2. college physics

Two solid spheres A and B are made from the same material. The mass of sphere B is eight times that of sphere A. If the radius of sphere A is 7.50 cm, what is the radius of sphere B?
3. college physics

Two solid spheres A and B are made from the same material. The mass of sphere B is eight times that of sphere A. If the radius of sphere A is 7.50 cm, what is the radius of sphere B?
4. math

1. Sphere C(-2,1,-3), radius=7. T plane at (4,-2,-1)=?
5. maths

1. Sphere C(-2,1,-3), radius=7. T plane at (4,-2,-1)=?
6. calculus

3. The radius r of a sphere is increasing at a constant rate of 0.04 centimeters per second. (Note: The volume of a sphere with radius r is v=4/3pir^3 ). a. At the time when the radius of the sphere is 10 cm, what is the rate of increase …
7. Calculus

4. At time t, t>0, the volume of a sphere is increasing at a rate proportional to the reciprocal of its radius. At t = 0, the radius of the sphere is 1 and at t = 15 the radius is 2. a. Find the radius of the sphere as a function …
8. geometry

A plane intersects a sphere that has a radius of 13 cm. The distance from the center of the sphere to the closest point on the plane is 5 cm. What is the radius of the circle that is the intersection of the sphere and the plane?
9. calculus

A hole of a radius of 1cm is pierced in a sphere of a 4cm radius. Calculate the volume of the remaining sphere. I know that the volume of a sphere with an exterior radius is of: V = pie(R^2 - r^2) dH where R^2 is the exterior surface …
10. calculus *improper integrals*

A hole of a radius of 1cm is pierced in a sphere of a 4cm radius. Calculate the volume of the remaining sphere. I know that the volume of a sphere with an exterior radius is of: V = pie(R^2 - r^2) dH where R^2 is the exterior surface …

More Similar Questions