posted by Dloc

The table below gives selected values for the function f(x). Use a trapezoidal estimation, with 6 trapezoids to approximate the value of integral from 1 to 2 f(x) dx
=.1*4/2+.1*7/2+.3*10/2+.2*13/2+.2(15/2)+.1*18/2

=4.40

1. Dloc

sorry the table is
x 1 1.1 1.2 1.5 1.7 1.9 2.0
f(x) 1 3 4 6 7 8 10

2. Reiny

I agree with your first line
=.1*4/2+.1*7/2+.3*10/2+.2*13/2+.2(15/2)+.1*18/2
= .1(2) + .1(3.5) + .3(5) + .2(6.5) + .2(7.5) + .1(9)
= .1(2+3.5+15+13+15+9)
= .1(57.5)
= 5.75

## Similar Questions

1. ### calculus

The function f is continuous on the closed interval [0,6] and has values that are given in the table below. x |0|2|4|6 f(x)|4|K|8|12 The trapezoidal approximation for(the integral): 6 S f(x) dx 1 found with 3 subintervals of equal …
2. ### calculus

1.Solve the differential equation dy/dx= y^2/x^3 for y=f(x) with the condition y(1) = 1. 2.Solve the differential equation y prime equals the product of 2 times x and the square root of the quantity 1 minus y squared. Explain why the …
3. ### calculus

The table below gives selected values for the function f(x). Use a trapezoidal estimation, with 6 trapezoids to approximate the value of . x 1 1.1 1.2 1.5 1.7 1.9 2.0 f(x) 1 3 4 6 7 8 10
4. ### Calculus

Given the table below for selected values of f(x), use 6 trapezoids to estimate the value of x 1 3 4 6 7 9 10 f(x) 4 8 6 10 10 12 16
5. ### Calculus

Messed this up on my last question. Given the table below for selected values of f(x), use 6 trapezoids to estimate the value of ∫f(x)dx where a=1 b=10 x 1 3 4 6 7 9 10 f(x) 4 8 6 10 10 12 16
6. ### calculus

3) The table below gives selected values for the function f(x). Use a trapezoidal estimation, with 6 trapezoids to approximate the value of int f(x) dx from 1 to 2 . Give 3 decimal places for your answer. x 1 1.1 1.2 1.5 1.7 1.9 2.0 …