prove sin(x+y)+sin(x-y)/cos(x+y)+cos(x-y)=tanx

Use trigonometric identities:

sin ( x + y ) = sin x cos y + cos x sin y

sin ( x - y ) = sin x cos y - cos x sin y

cos ( x + y ) = cos x cos y - sin x sin y

cos ( x - y ) = sin x sin y + cos x cos y

sin ( x + y ) + sin ( x - y ) =

sin x cos y + cos x sin y + sin x cos y - cos x sin y =

sin x cos y + sin x cos y + cos x sin y - cos x sin y =

2 sin x cos y

cos ( x + y ) + cos ( x - y ) =

cos x cos y - sin x sin y + sin x sin y + cos x cos y =

cos x cos y + cos x cos y - sin x sin y + sin x sin y =

2 cos x cos y

[ sin ( x + y ) + sin ( x - y ) ] / [ cos ( x + y ) + cos ( x - y ) ] =

2 sin x cos y / 2 cos x cos y =

sin x / cos x = tan x

Watch those brackets, you must have meant:

(sin(x+y)+sin(x-y))/(cos(x+y)+cos(x-y))=tanx

LS =
(sinxcosy + cosxsiny + sinxcosy - sinxcosy)/(cosxcosy - sinxsiny + cosxcosy + sinxsiny)
= 2sinxcosy/(2cosxcosy)
= (sinx/cosx)(cosy/cosy)
= tanx
= RS

To prove the given equation, we'll start with the left-hand side (LHS) and simplify it step-by-step to see if it simplifies to the right-hand side (RHS).

LHS: (sin(x + y) + sin(x - y)) / (cos(x + y) + cos(x - y))

Step 1: Expand the numerator
We can expand the numerator using the sum-to-product formulas for sine:

LHS: (sin(x)cos(y) + cos(x)sin(y) + sin(x)cos(y) - cos(x)sin(y)) / (cos(x + y) + cos(x - y))

Simplifying the numerator:

LHS: (2sin(x)cos(y)) / (cos(x + y) + cos(x - y))

Step 2: Expand the denominator
Similarly, we can expand the denominator using the sum-to-product formulas for cosine:

LHS: (2sin(x)cos(y)) / [2cos(x)cos(y)]

Canceling out the common factors of 2 and cos(y):

LHS: sin(x) / cos(x)

Step 3: Simplify sin(x) / cos(x)
The expression sin(x) / cos(x) is equivalent to the tangent of x, so we have:

LHS: tan(x)

Since the LHS simplifies to the RHS, we have proved the given equation:

(sin(x + y) + sin(x - y)) / (cos(x + y) + cos(x - y)) = tan(x)

To prove the trigonometric identity sin(x+y) + sin(x-y) / cos(x+y) + cos(x-y) = tan(x), we'll start by simplifying the expression on the left-hand side (LHS) using trigonometric identities.

First, we'll write the numerator of the expression (sin(x+y) + sin(x-y)) as a single term:
sin(x+y) + sin(x-y) = (sin x cos y + cos x sin y) + (sin x cos y - cos x sin y)
= sin x cos y + cos x sin y + sin x cos y - cos x sin y
= 2 sin x cos y

Next, we'll write the denominator of the expression (cos(x+y) + cos(x-y)) as a single term:
cos(x+y) + cos(x-y) = (cos x cos y - sin x sin y) + (cos x cos y + sin x sin y)
= cos x cos y - sin x sin y + cos x cos y + sin x sin y
= 2 cos x cos y

Now, we can simplify the expression:
LHS = (2 sin x cos y) / (2 cos x cos y)

Dividing both the numerator and denominator by 2, we get:
LHS = (sin x cos y) / (cos x cos y)

Now, we can simplify further by canceling out the common factors (cos y):
LHS = sin x / cos x

Finally, using the definition of tan x, we have:
LHS = tan x

Thus, we have proven that sin(x+y) + sin(x-y) / cos(x+y) + cos(x-y) = tan x.