Post a New Question

Differential Equations

posted by .

Consider the spring - mass system, shown in Figure 4.2.4. consisting of two unit masses suspended from springs with spring constants 3 and 2, respectively. Assume that there is no damping in the system. Show that the displacements u1, and u2 of the masses from their respective equilibrium positions satisfy the equations (Using newton's second law) Solve the first of Eqs. (i) for u2 and substitute into the second equation, thereby obtaining the following fourth order equation for u1. Find the general solution of Eq. (ii).

  • Differential Equations -


Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

More Related Questions

Post a New Question