# Calc2

posted by .

Let f(t) be a function defined for all values of t. The Laplace Transform of f(t) is defined by: F(s)= ç[∘,‡](e^-st(f(t))dt). If the improper integral exists, Find the Laplace Transform for F(t)=t^2.

• Calc2 -

well, we know that L{1} = 1/s

and, we know from our handy table of transforms that

L{t^n f(t)} = (-1)^n F(n)(s)

so,

L{t^2} = 2/s^3

## Similar Questions

1. ### differential equation

Find the Laplace transform by using the theorem of L{f(t-a)H(t-a)}=(e^-as)F(s) L{(e^4t)H(t-10)}
2. ### Math

Using the table Laplace transform, determine the function f (t) of the following functions F (s). F(s)= 1/s^2 + 3s/s^2+9 F(s)= 6/s^2 + 10s+29 F(s)= 1/2s + 8/s^2+4s+8 - 3/s^2
3. ### Calculus-HELP!!!

Find the Laplace transform of: f(t) = cos^(2)(2t)
4. ### Calculus-HELP!!!

Find the Laplace transform of: f(t) = cos^(2)(2t)
5. ### Calculus

Find the Laplace transform of: f(t)=t-2e^(3t)
6. ### Calculus-HELP!!!

Find the inverse Laplace transform of: F(s)=2/s^4
7. ### Calculus

Find the inverse Laplace transform of: F(s)=3/(s-4)
8. ### Calculus-PLZ HELP STEVE!

Find the inverse Laplace transform of the following function: F(s)=(9+s)/(4-s^2)
9. ### calculus

Find the inverse Laplace transform of the function: F(s)=1/(s(s+1)(s+2))
10. ### calc 2

(last one) ... Let f(t) be a function defined for all values of t. The Laplace Transform of f(t) is defined by: F(s)= ç[∘,‡](e^-st(f(t))dt). If the improper integral exists, Find the Laplace Transform for f(t)= sinhat

More Similar Questions