posted by .

Figure 1 shows a simplication of the AM1.5 solar spectrum at 1000W/m2. The spectrum is divided in three spectral ranges:

A for 0nm<λ<620nm

B for 620nm<λ<1240nm

C for 1240nm<λ<1860nm

The photon flux in each spectral range is also shown in the figure.

a) The hydrogenated silicon carbide material (a-SiC:H) is a new type of amorphous semiconductor material which has been recently studied for PV applications. This material has a relative large band gap of 2.0 eV. Imagine we integrate this material in a single-junction p-i-n solar cell as shown in Figure 2a below. In which spectral ranges does this solar cell convert light into charge carriers?

1)A
2)B
3)C

b) What is the Jsc (in mA/cm2) of the solar cell if only 65% of the absorbed photons result in a current?

c) The Voc in V of the a-SiC:H solar cell can be roughly estimated by the equation:

Voc=Egap(J)2q=Egap(eV)2
where q is the elementary charge, Egap(J) is the bandgap energy expressed in Joules, and Egap(eV) is the bandgap energy expressed in eV. The fill factor of the solar cell is FF=0.80. What is the efficiency of the solar cell (in %) ?

An up-convertor is a material which can convert two low-energy photons into a higher energy photon. Placing an up-convertor in our solar cell can help to reduce the spectral mismatch, since it can convert some photons with energy lower than 2 eV, which are not absorbed by the a-SiC:H cell, into a photon with an energy higher than 2 eV. Figure 2b depicts this possibility.

d) In the up-convertor 1, two photons are converted into one photon with 100% conversion efficiency. If all photons with energy above that of the band gap of a-SiC:H are absorbed in the a-SiC:H layer, in which spectral range can the photons be up-converted so that they contribute to the current in the cell as well?

1)A
2)B
3)C

e) In that case what would be the short-circuit current density and the efficiency of the solar cell illustrated in Figure 2b? Assume again that 65% of the absorbed photons result in a current.

Short-circuit current density in mA/cm2

Efficiency in %

f) In up-convertor 2 (see Figure 2c), three photons are converted into one photon with 100% conversion efficiency. if all photons with energy above that of the band gap of a-SiC:H are absorbed in the p-i-n cell, and convertor 1 absorbs only the photons in the spectral range as considered in parts e) and f), in which spectral part can the photons be up-converted by convertor 2 so that they contribute to the current in the cell as well?

1)A
2)B
3)C

g) In that case what would be the short-circuit current density and the efficiency of the solar cell illustrated in Figure 2c? Assume that 65% of the absorbed photons result in a current.

Short-circuit current density in mA/cm2

Efficiency in %

a) A
d) B
f) C

Can you also give out the rest of the answers?? thanks

where is the rest of the answers?

It is not possible to solve the rest of the answers the figure are missing.

Please Is anybody who can help this question? Thanks

Why don't you add the missing figures
2a, 2b, and 2c

courses edx org/c4x/DelftX/ET3034TUx/asset/Week5_Specturm png

This is the image's url, replace the spaces with dots

postimg org/image/kylqxalt7/

Try this put a dot after 'postimg'

The link is for fig. 1
still need fig 2a, 2b, and 2c

ϕ=9.3∗1020m−2s−1 for 300nm<λ<650nm

ϕ=8.4∗1020m−2s−1 for 650nm<λ<850nm

ϕ=1.4∗1021m−2s−1 for 850nm<λ<1250nm

AND

Voc = Egap(J)/2q = Egap(eV)/2

Sorry the above 2 answers are for another question...

postimg org/image/htap77x5d/

1a. = A

1.b = 10.4mA/cm2, 8.33%

1c = B

1d = 18mA/cm2, 14%

1f = C

1g = 18.7 mA/cm2, 15%

Thanks

jiskha com/display.cgi?id=1382813246

Thanks Ken

e 14 and thanks for the answers guys i will pray for u :)

e is 14 and 14 again

1)A
2)10 mA/cm^2
3)8%
4)B
5)18mA/cm^2
6)14%
7)C
8)19mA/cm^2
9)15%
Enjoy guys!!!!

When adding the photon flux of A and half of the photon flux of B I come to 1.55E+17 photons/cm2. This gives a short-circuit current density of 16.12mA/cm2 which is wrong. Where is my mistake???

## Similar Questions

1. ### Physics

Consider a single photon with a wavelength of λ, a frequency of ν, and an energy of E. What is the wavelength, frequency, and energy of a pulse of light containing 100 of these photons?
2. ### Solar

Greeting All, please assist with the below. Thanks. The spectral power density of a solar simulator is given by: P(λ)=7.5∗1015λ−2.25∗109 [Wm^-2m^-1] for 300nm<λ<500nm P(λ)=2.25∗109−1.5∗1015λ …

Solar simulators are used to study the performance of solar cells in the lab. In the figure below (left picture), the spectral power density of a solar simulator is shown with the blue line. The spectral power density of this solar …

A gamma ray with 700KeV energy is Compton-Scattered from an electron. Find the energy of the photon scattered at 110 degrees, the energy of the scattered electron, and the recoil angle of the electron mp=mass of proton=1.673x10^-27 …
5. ### chemistry

Sodium vapor lamps are used in Chicago to light city streets. The light emitted (given off) by these lamps has a λ of 5.9 x 10-7 m. What is the λ in cm?
6. ### Physics

A photon having wavelength λ scatters off a free electron at A (see figure below), producing a second photon having wavelength λ'. This photon then scatters off another free electron at B, producing a third photon having …
7. ### Calculus

My question is finding the derivitive of y=((x+λ)^4)/(x^4+λ^4). I distributed the exponent in the numerator, but I don't know if that's right. Rewritten as y=(x^4+λ^4)/(x^4+λ^4). I found the derivitive and multiplied …
8. ### Physics

Monochromatic light of wavelength, λ is traveling in air. The light then strikes a thin film having an index of refraction n1 that is coating a material having an index of refraction n2. If n2 is larger than n1, what minimum film …
9. ### MATH

The FritzHugh-Nagomo equation occurs in many apps such as biology, genetics and heat transfer. In the 1-D case, it can be written as du/dt = d^2/dx^2 + u(u-1)(λ-u) where λ is constant. Show that this eqn supports a travelling …
10. ### physics

A diffraction grating having 180 lines/mm is illuminated with a light signal containing two wavelengths, λ1 = 400 nm and λ2 = 500 nm. The signal is incident perpendicularly on the grating. What is the smallest angle at which …

More Similar Questions