Math (College Level Mathematics)

posted by .

Fourier sin series for f(x) = 1, 0 < x < Pie is given by 1 = 4/n E 1/ (2n-1) times sin (2n-1) x, (0 < x < n).

Using this, find the Fourier sinc series for f(x)= 1, on 0 < x < c where c > 0. Then find the Fourier series for g(x), x > 0 where g(x) = 1, 0 < x < c, -1, c < x < 2c, g (x + 2c) = g(x), g (nc) = 0, n = 1, 2, 3, ...

Finally, sketch the graph of g(x), x > 0. Be sure to justify convergence is the F series to g(x) at every x > 0.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Fourier Sine Series Q

    I have the function f(x) = cos(x) on the interval from 0 to pi and I need to comput the Fourier sine series. I have the integral of cos(x) multiplied by sin(nx), I can't figure out a way to integrate them! The "n" gets in the way, …
  2. Math (College Level Mathematics)

    Fourier cosine series correspondence for f(x)= x, o < x < pie given by x ~ pie / 2 - 4/n, E infinity on top and n=1 on bottom. cos (an-1)/x / (2n-1)squared, (0 < x < Pie). Explain why this correspondence is actually an …
  3. math

    Anyone can help me on this qns? The Fourier series expansion for the periodic function,f(t) = |sin t|is defined in its fundamental interval. Taking π = 3.142, calculate the Fourier cosine series approximation of f(t), up to the
  4. math

    The Fourier series expansion for the periodic function,f(t) = |sin t|is defined in its fundamental interval. Taking π = 3.142, calculate the Fourier cosine series approximation of f(t), up to the 6th harmonics when t = 1.09. Give …
  5. math

    The Fourier series expansion for the periodic function,f(t) = |sin t|is defined in its fundamental interval. Taking π = 3.142, calculate the Fourier cosine series approximation of f(t), up to the 6th harmonics when t = 1.09. Give …
  6. Advanced math

    Find the Fourier sine expansion of the function sin(x) - sin(4x)
  7. Math, Fourier Series

    For Fourier Series of f(x)=sin|x| which is an even function, bn should be 0. However, I solved that b1=1 while the rest of the terms =0, meaning bn=0. Is there a mistake?
  8. Math- Fourier series

    Evaluate the formula for cn in Fourier :integral of e^kx dx = e^kx /k :unless k=0: Type your formula for c0 and cn (n>0) into the indicated spaces. Then rewrite the Fourier series in terms of sines and cosines. Simplify as far as …
  9. Math- Fourier series

    Evaluate the formula for cn in Fourier :integral of e^kx dx = e^kx /k :unless k=0: Type your formula for c0 and cn (n>0) into the indicated spaces. Then rewrite the Fourier series in terms of sines and cosines. Simplify as far as …
  10. Math- Fourier series

    Evaluate the formula for cn in Fourier :integral of e^kx dx = e^kx /k :unless k=0: Type your formula for c0 and cn (n>0) into the indicated spaces. Then rewrite the Fourier series in terms of sines and cosines. Simplify as far as …

More Similar Questions