calculus
posted by Roy .
Find dy/dx, if y= (sinx)^1

y = (sin x)^1
This can also be rewritten as
y = 1/(sin x)
y = csc x
Therefore,
dy/dx = cot(x) * csc(x)
Hope this helps~ :3
Respond to this Question
Similar Questions

Trig........
I need to prove that the following is true. Thanks (cosx / 1sinx ) = ( 1+sinx / cosx ) I recall this question causing all kinds of problems when I was still teaching. it requires a little "trick" L.S. =cosx/(1sinx) multiply top and … 
math
the problem is 2cos^2x + sinx1=0 the directions are to "use an identity to solve each equation on the interval [0,2pi). This is what i've done so far: 2cos^2x+sinx1=0 2cos^2x1+sinx=0 cos2x + sinx =0 1  2sin^2x + sinx = 0 2sin^2x+sinx1=0 … 
Calculus
Find the partial derivatives of f(x,y)=(sinx + y)^(y sinx) 
calculus
Could someone check my reasoning? thanx Find the derivative of the function. sin(sin[sinx]) I need to use the chain rule to solve. So I take the derivative sin(sin[sinx) first. Then multiply that by the inside which is the derivative 
Calculus
Find the area between y=cosx and y=sinx from 0 to 2pi. To find the zeros, I combined the equations cosxsinx=0 What's next? 
Trig Help
Prove the following: [1+sinx]/[1+cscx]=tanx/secx =[1+sinx]/[1+1/sinx] =[1+sinx]/[(sinx+1)/sinx] =[1+sinx]*[sinx/(sinx+1)] =[sinx+sin^2x]/[sinx+1] =[sinx+(1cos^2x)]/[sinx+1] =? 
Calculus
Q: If y=sinx/(1+tanx), find value of x not greater than pi, corresponding to maxima or minima value of y. I have proceeded thus Equating dy/dx=0 we get{ (1+tanx)cosxsinx.sec^2 x}/(1+tanx)^2=0……..(A) Or cosx+sinx=sinx.sec^2 x … 
Calculus
Find the derivatives of the following 18. y=〖cos〗^4 x^4 ANSWER: tanx2 19. y= sinx/(1+ 〖cos〗^2 x) ANSWER: 3sinx 20. y=sinx(sinx+cosx) ANSWER: sinx Can you check my answers? 
Math Help
Hello! Can someone please check and see if I did this right? 
Calculus
If y=3/(sinx+cosx) , find dy/dx A. 3sinx3cosx B. 3/(sinx+cosx)^2 C. 3/(sinx+cosx)^2 D. 3(cosxsinx)/(sinx+cosx)^2 E. 3(sinxcosx)/(1+2sinxcosx)