geometry

posted by .

A smooth partition of the integer n is a set of positive integers a1,a2,…ak such that
1. k is a positive integer,
2. a1≤a2≤⋯≤ak,
3. ∑ki=1ai=n, and
4. ak−a1≤1.
Determine how many smooth partitions there are of the integer 250.

  • geometry -

    250

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. algebra 1 help please

    4) a student score is 83 and 91 on her first two quizzes. write and solve a compound inequality to find possible values for a thord quiz score that would give anverage between 85 and 90. a. 85≤83+91+n/3 ≤90; 81≤n≤96 …
  2. Math (algebra)

    Suppose a and b are positive integers satisfying 1≤a≤31, 1≤b≤31 such that the polynomial P(x)=x^3−ax^2+a^2b^3x+9a^2b^2 has roots r, s, and t. Given that there exists a positive integer k such that (r+s)(s+t)(r+t)=k^2, …
  3. Maths

    Suppose a and b are positive integers satisfying 1≤a≤31, 1≤b≤31 such that the polynomial P(x)=x3−ax2+a2b3x+9a2b2 has roots r, s, and t. Given that there exists a positive integer k such that (r+s)(s+t)(r+t)=k2, …
  4. Maths Please Help

    Let A=a1,a2,…,ak and B=b1,b2,…,bj be sequences of positive integers such that a1≥a2≥⋯ak≥1, b1≥b2≥⋯bj≥1, ∑i=1k ai≤6, and ∑j i=1 bi≤6. For how many ordered pairs …
  5. Math

    Find the largest possible degree n≤1000 of a polynomial p(x) such that: p(i)=i for every integer i with 1≤i≤n p(−1)=1671 p(0) is an integer (not necessarily 0).
  6. Math

    A smooth partition of the integer n is a set of positive integers a 1 ,a 2 ,…a k such that 1. k is a positive integer, 2. a 1 ≤a 2 ≤⋯≤a k , 3. ∑ k i=1 a i =n, and 4. a k −a 1 ≤1. Determine …
  7. PRE - CALCULUS

    Eliminate the parameter t. Find a rectangular equation for the plane curve defined by the parametric equations. x = 6 cos t, y = 6 sin t; 0 ≤ t ≤ 2π A. x2 - y2 = 6; -6 ≤ x ≤ 6 B. x2 - y2 = 36; -6 ≤ …
  8. Differentials (calc)

    Solve the Poisson equation ∇^2u = sin(πx) for 0 ≤ x ≤ 1and 0 ≤ y ≤ 1 with boundary conditions u(x, 0) = x for 0 ≤ x ≤ 1/2, u(x, 0) = 1 − x for 1/2 ≤ x ≤ 1 and 0 everywhere …
  9. Calculus

    f is a continuous function with a domain [−3, 9] such that f(x)= 3 , -3 ≤ x < 0 -x+3 , 0 ≤ x ≤ 6 -3 , 6 < x ≤ 9 and let g(x)= ∫ f(t) dt where a=-2 b=x On what interval is g increasing?
  10. algebra

    Call a positive integer N ≥ 2 “special” if for every k such that 2 ≤ k ≤ N, N can be expressed as a sum of k positive integers that are relatively prime to N (although not necessarily relatively prime to each …

More Similar Questions