# trig

posted by .

Find cos(A+B).

cos A=1/3 and sin B=-1/2, with A in quadrant I and B in quadrant IV.

• trig -

cos A = 1 / 3

sin A = + OR - sqrt ( 1 - cos A ^ 2 )

sin A = + OR - sqrt ( 1 - ( 1 / 3 ) ^ 2 )

sin A = + OR - sqrt ( 1 - 1 / 9 )

sin A = + OR - sqrt ( 9 / 9 - 1 / 9 )

sin A = + OR - sqrt ( 8 / 9 )

sin A = + OR - sqrt ( 4 * 2 / 9 )

sin A = + OR - sqrt ( 4 ) * sqrt ( 2 ) / sqrt ( 9 )

sin A = + OR - 2 * sqrt ( 2 ) / 3

sin A = + OR - ( 2 / 3 ) * sqrt ( 2 )

In quadrant I sine are positive so :

sin A = ( 2 / 3 ) * sqrt ( 2 )

sin B = - 1 / 2

sin B = + OR - sqrt ( 1- cos B ^ 2 )

cos B = + OR - sqrt ( 1 - ( - 1 / 2 ) ^ 2 )

cos B = + OR - sqrt ( 1 - 1 / 4 )

cos B = + OR - sqrt ( 4 / 4 - 1 / 4 )

cos B = + OR - sqrt ( 3 / 4 )

cos B = + OR - sqrt ( 3 ) / 2

In quadrant IV cosine are positive so :

cos B = sqrt ( 3 ) / 2

cos ( A + B ) = cos A * cos B - sin A * sin B

cos ( A + B ) = ( 1 / 3 ) * sqrt ( 3 ) / 2 - ( 2 / 3 ) * sqrt ( 2 ) * ( - 1 / 2 )

cos ( A + B ) = ( 1 / 6 )sqrt ( 3 ) + ( 2 / 6 ) * sqrt ( 2 )

cos ( A + B ) = ( 1 / 6 ) [ sqrt ( 3 ) + 2 sqrt ( 2 ) ]

cos ( A + B ) = [ sqrt ( 3 ) + 2 sqrt ( 2 ) ] / 6

• trig -

what's all this work?

A is in QI, so sinA = √8/3
B is in QIV so cosB = √3/2

and then as done in the final paragraph

## Similar Questions

1. ### TRIG!

Posted by hayden on Monday, February 23, 2009 at 4:05pm. sin^6 x + cos^6 x=1 - (3/4)sin^2 2x work on one side only! Responses Trig please help! - Reiny, Monday, February 23, 2009 at 4:27pm LS looks like the sum of cubes sin^6 x + cos^6 …
2. ### trig

can someone please help me with this problem. i'm doing my review right now and i'm stuck?
3. ### Trig

Find cos(s+t) if cos s= -1/2 and sin t= 3/5, s and t are in quadrant II. I got the answer to be -4/10 plus -3sqrt(3)/10. Is that right?
4. ### Trig

find sin(s+t), given that sin t=1/3, t in quadrant 2, and cos s = -2/5, s in quadrant 3
5. ### mth, trig

Given cos a=-7/25 in quadrant II , and sin b=-12/13, in quadrant IV , find cos(a+b) and sin2a
6. ### Trig

Find sin(s+t) and (s-t) if cos(s)= 1/5 and sin(t) = 3/5 and s and t are in quadrant 1. =Sin(s)cos(t) + Cos(s)Sin(t) =Sin(1/5)Cos(3/5) + Cos(-1/5)Sin(3/5) = 0.389418 Sin(s-t) =sin(s)cos(t) - cos(s)sin(t) =sin(-3/5)cos(1/5) - cos(1/5)sin(3/5) …
7. ### Trig

Find sin(x+y), cos(x-y), tan(x+y), and the quadrant of (x+y) if sinx= -1/4, cosy= -4/5, with x and y in quadrant 3.
8. ### Trig

1. Given Sin(A) = ⅗ and Cos(B) = 8/17 in Quadrant I, find Sin(A+B). a) 24/80 [b)] 84/85 c) 60/80 d) 60/85 Find Cos(A+B). a) 32/80 b) -45/85 c) -13/80 [d)] -13/85 Find Tan(A+B) a) 0.8 [b)] -1.72 c) -4.21 d) -6.46 I keep getting …
9. ### Trig

Given Tan(A) = 5 in Quadrant III and Sin(B) = ⅔ in Quadrant II, find Cos(A-B).
10. ### Pre calc

sin(θ − ϕ); tan(θ) = 5/12 θ in Quadrant III, sin(ϕ) = − sqaure root10/10 ϕ in Quadrant IV. I used the sin equation sin(a)cos(b)-sin(a)cos(b) However I am still getting the wrong answer

More Similar Questions