# precalculus

posted by Anonymous

Berry is standing at the edge of a hill that slopes downward and to the right. He notices that for every 5 feet you go in a horizontal direction, the hill drops by 2 feet. Berry places a ball at the edge of the hill (the origin of the coordinate system), and kicks the ball at a speed of 20 m/s and at an angle of 30o to the horizontal. The equation describing the ball’s height as a function of the horizontal distance it travels is given by . How far down the hill does the ball land?

1. Steve

the velocity has horizontal and vertical components
Vx = 20(√3/2) = 17.32
Vy = 20(1/2) = 10.00

The horizontal and vertical positions of the ball are thus

sx = 17.32t
sy = 10.00t - 4.9t^2
So, the x-y function of the height is
y = 10.00(x/17.32) - 4.9(x/17.32)^2
= -0.01633x^2 + 0.5774x

The ground is descending with slope = -2/5 so the surface is given by

y = -2/5 x

So, where does the parabola intersect the line?

-0.01633x^2 + 0.5774x = -0.4x
x = 59.85
y = -23.94

so the distance down the slope is

d = √(59.85^2 + 23.94^2) = 64.46 m

## Similar Questions

1. ### precalculus

Berry is standing at the edge of a hill that slopes downward and to the right. He notices that for every 5 feet you go in a horizontal direction, the hill drops by 2 feet. Berry places a ball at the edge of the hill (the origin of …
2. ### math

Street | Horizontal | Vertical rise Distance ft. |of street ft. _______|_____________|_______________ Dixie hill| 80. | 40 Bell hill | 80. | 20 Liberty hill| 80. | 60 Which hill is the steepest?
3. ### Math

Which hill described in the table is the steepest?
4. ### math

Which hill described in the table is the steepest?

Which hill described in the table is the steepest and why?