heeeelp math
posted by clavin .
For each positive integer n, let Hn=1/1 + 1/2 +⋯+ 1/n . If ∑ (up)∞ (base)(n=4) 1/n*Hn*H(n1)= a/b for relatively prime positive integers a and b, find a+b.
Respond to this Question
Similar Questions

discrete math
which positive integers less than 12 are relatively prime to 13 Since 13 has no factors, then all integers 2, 3, 4, 5, 6....11 are relatively prime to 13 
mathgeometry
1. A rhombus has a perimeter of 96, and the length of one of its diagonals is 32. The area of the circle inscribed in the rhombus can be expressed as k*pi/w where k and w are relatively prime positive integers. Find the value of k … 
math
Let’s agree to say that a positive integer is primelike if it is not divisible by 2, 3, or 5. How many primelike positive integers are there less than 100? 
MATH
Let’s agree to say that a positive integer is primelike if it is not divisible by 2, 3, or 5. How many primelike positive integers are there less than 100? 
MATH
Find the only positive integer whose cube is the sum of the cubes of three positive integers immediately preceding it. Find this positive integer. Your algebraic work must be detailed enough to show this is the only positive integer … 
Maths Please Help
Let A=a1,a2,…,ak and B=b1,b2,…,bj be sequences of positive integers such that a1≥a2≥⋯ak≥1, b1≥b2≥⋯bj≥1, ∑i=1k ai≤6, and ∑j i=1 bi≤6. For how many ordered pairs … 
pls heeelp math
For each positive integer n, let H _{n} = 1/1 +1/2 +⋯+ 1/n sum_{n=4}^{∞} 1/n*H_{n}*H_{n1}=a/b for relatively prime positive integers a and b, find a+b 
Math
A smooth partition of the integer n is a set of positive integers a 1 ,a 2 ,…a k such that 1. k is a positive integer, 2. a 1 ≤a 2 ≤⋯≤a k , 3. ∑ k i=1 a i =n, and 4. a k −a 1 ≤1. Determine … 
geometry
A smooth partition of the integer n is a set of positive integers a1,a2,…ak such that 1. k is a positive integer, 2. a1≤a2≤⋯≤ak, 3. ∑ki=1ai=n, and 4. ak−a1≤1. Determine how many smooth partitions … 
algebra
Call a positive integer N ≥ 2 “special” if for every k such that 2 ≤ k ≤ N, N can be expressed as a sum of k positive integers that are relatively prime to N (although not necessarily relatively prime to each …