heeeeeeeeelp math
posted by andrew
How many ordered pairs of positive integers 1≤k≤n≤50 are there, such that k divides n, and (n/k )!= n!/k! ?
Respond to this Question
Similar Questions

Algebra 2
Solve. 4a2≤a+1≤3a+4 4a21≤a+11≤3a+41 4a33≤a≤3a+33 4a/36/3≤a≤3a/3 4a/3(1/a)2≤a≤a(1/a) 4/36≤a≤1 I got lost at this part. I'm not sure what to do now, if … 
math
n and m are positive integers that satisfy n^3+2n^2=m^2. If 1≤n≤1000, how many possible pairs of (n,m) are there? 
algebra 1 help please
4) a student score is 83 and 91 on her first two quizzes. write and solve a compound inequality to find possible values for a thord quiz score that would give anverage between 85 and 90. a. 85≤83+91+n/3 ≤90; 81≤n≤96 … 
Math (algebra)
Suppose a and b are positive integers satisfying 1≤a≤31, 1≤b≤31 such that the polynomial P(x)=x^3−ax^2+a^2b^3x+9a^2b^2 has roots r, s, and t. Given that there exists a positive integer k such that (r+s)(s+t)(r+t)=k^2, … 
Maths
Suppose a and b are positive integers satisfying 1≤a≤31, 1≤b≤31 such that the polynomial P(x)=x3−ax2+a2b3x+9a2b2 has roots r, s, and t. Given that there exists a positive integer k such that (r+s)(s+t)(r+t)=k2, … 
plls heeeeeeelp math
How many ordered pairs of positive integers 1≤k≤n≤50 are there, such that k divides n, and (n/k )!= n!/k! ? 
math
How many ordered pairs of positive integers 1≤k≤n≤50 are there, such that k divides n, and (n/k)!=n!/k!? 
PRE  CALCULUS
Eliminate the parameter t. Find a rectangular equation for the plane curve defined by the parametric equations. x = 6 cos t, y = 6 sin t; 0 ≤ t ≤ 2π A. x2  y2 = 6; 6 ≤ x ≤ 6 B. x2  y2 = 36; 6 ≤ … 
Differentials (calc)
Solve the Poisson equation ∇^2u = sin(πx) for 0 ≤ x ≤ 1and 0 ≤ y ≤ 1 with boundary conditions u(x, 0) = x for 0 ≤ x ≤ 1/2, u(x, 0) = 1 − x for 1/2 ≤ x ≤ 1 and 0 everywhere … 
Math
The function b(h) models the percent of a certain wildflower that blooms during months in which the average daily sunlight is h hours. Name the most appropriate domain for this function. A. Integers, h ≤ 24 B. Integers, 0 ≤ …