Mechanics
posted by AMK .
The cylindrical bar in the figure has a total length L=1.2 m, a diameter d=15 mm, and is confined by fixed supports at the walls A and B. A concentrated axial load FC=30 kN is applied to the bar at point C as indicated in the figure, with LAC>LBC. The bar is homogenous with Young’s modulus E. The material will fail if the magnitude of axial stress in the material exceeds σf=226 MPa.
If you apply the force at the center of the shaft ( LBC=LAC ), what safety factor SFmid would you have against failure? Provide a numerical (dimensionless) value:
If you want to apply the force FC as close as possible to the wall at B, but you also want to maintain a minimum safety factor SFmin=2 against failure, what is the minimum (LBC/LAC) that you can have? Provide a numerical (dimensionless) value:
Respond to this Question
Similar Questions

physics
Consider two straight bars of uniform cross section made of the same material. Bar 1 has an axial length of and a square cross section with side length . Bar 2 has an axial length of and a round cross section with diameter. When subjected … 
psuchics
Reaction at support and internal axial force resultant Consider two straight bars of uniform cross section made of the same material. Bar 1 has an axial length 1m of and a square cross section 1mm with side length . Bar 2 has an axial … 
Physic
Reaction at support and internal axial force resultant Consider two straight bars of uniform cross section made of the same material. Bar 1 has an axial length 1m of and a square cross section 1mm with side length . Bar 2 has an axial … 
Physics
Tapered bar with end load The small tapered bar BC has length L=0.1 m and is made of a homogeneous material with Young’s modulus E=10 GPa. The cross sectional area of the bar is slowly varying between A0=160 mm^2 (at B) and A0/2 … 
Physics
Composite bar with end load (two segments) The composite bar BCD in the figure is composed of an inner aluminum cylindrical core of length 2L=2 m and radius R=1 cm and a sleeve of steel of length L=1 m and thickness R=1 cm surrounding … 
physic
The composite bar BCD in the figure is composed of an inner aluminum cylindrical core of length 2l=2m and radius R=1cm and a sleeve of steel of length L=1m and thickness R=1cm surrounding the aluminum core in the CD section of the … 
Physic
A steel bar of length L=2 m, with modulus E=200 GPa and constant cross sectional area A=200 mm2 is constrained between two walls at its two ends A and B. A distributed axial load, fx(x)=−p0(1−3x2L), with p0=200 kN/m, is … 
Physic
The composite bar BCD in the figure is composed of an inner aluminum cylindrical core of length 2L=2 m and radius R=1 cm, and a sleeve of steel of length L=1 m and thickness R=1 cm surrounding the aluminum core in the CD section of … 
physics
A steel bar of length L=2 m, with modulus E=200 GPa and constant cross sectional area A=200 mm2 is constrained between two walls at its two ends A and B. A distributed axial load, fx(x)=−p0(1−3x2L), with p0=200 kN/m, is … 
Physics
The cylindrical bar in the figure has a total length L=1.2 m, a diameter d=15 mm, and is confined by fixed supports at the walls A and B. A concentrated axial load FC=30 kN is applied to the bar at point C as indicated in the figure, …