log[1/6](x^2+x)log[1/6](x^2x)=2
posted by Audrey .
Solve the equation
log[1/6](x^2+x)log[1/6](x^2x)=2

log[1/6](x^2+x)log[1/6](x^2x)=2 
Steve
raise 1/6 to the power
(x^2+x)/(x^2x) = (1/6)^2 = 36
(x+1)/(x1) = 36
x = 37/35
Respond to this Question
Similar Questions

math
write as a single logarithm: 2logbase3(1/x)+(1/3)logbase3(square root of x) please show the steps to solving this. thanx. remember that 1 log (AxB) = log A + Log B (same base) 2 log (A/B) = log A  log B 3 log A^n = n log A use these … 
math
solve for x without using a calculator 5^(x+1) = 25 i know that x would equal 1 because 5^2 is 25, but i don't know how to show how to solve it All you need to do is what you just did: Explain that if x = 1, the equation is satisfied. … 
Algebra 2
how do not understand how to do this Log X + Lob (X3) = 1 I know I do this Log X(X3)=1 then I do this Log X^(2)  3X = 1 then I do this 2 Log (X3X) = 1 then 2 Log (2X) = 1 then (2 Log (2X) = 1)(1/2) Log (2X) = 1/2 then (Log (2X) … 
Mathematics
Prove that log a, log ar, log ar^2 is an a.p. Is the following below correct? 
Math Help Please
Which of the following expressions is equal to log (x sqrty)/z^5 A. log x + log (1/2) + log y– log 5 – log z B. log [x + (1/2)y – 5z] C. log x + (1/2)log y – 5 log z d. [(1/2) log x log y]/(5 log z) 
math(Please help)
1) use the properties of logarithms to simplify the logarithmic expression. log base 10 (9/300) log  log 300 log 9 = 2 log 3 log 300 = log 3 + log 100 = log 3+2 I just do not know how to put these together now! 
math
Logarithm!!! Select all of the following that are true statements: (a) log(2x) = log(2) + log(x) (b) log(3x) = 3 log(x) (c) log(12y) = 2 log(2) + log(3y) (d) log(5y) = log(20y) – log(4) (e) log(x) = log(5x) – log(5) (f) ln(25) … 
Advanced Functions/ Precalculus Log
1. Evaluate 4^(log base4 64) + 10^(log100) 2. Write 1+log(base2)x^3 as a single logarithm 3. Write log(base b)√(x^3 y z^6) 4. Solve log(base 2)xlog(base 2)6=log(base 2)5+2log(base 2)3 5. Solve 3^(2x) = 9(81^x) 6. Solve 3^(2x)=7^(3x1). … 
Precaculculus
Suppose you are told that log(2)=0.3562 and log(3)=0.5646. All of them with the base of 'a'. Find: i) log(6) ii) log(9) Solutions i) log(6)= log (3)(2) = log 3 + log 2 = 0.5646 + 0.3562 = 0.9208 ii)log(9)= log 3^2 = 2 log 3 = 2 (0.5646) … 
Calculus AB
How do you solve a system of logarithmic equations?