Maths
posted by HELP!! .
Suppose a and b are positive integers satisfying 1≤a≤31, 1≤b≤31 such that the polynomial P(x)=x3−ax2+a2b3x+9a2b2 has roots r, s, and t.
Given that there exists a positive integer k such that (r+s)(s+t)(r+t)=k2, compute the maximum possible value of ab.

Maths 
a
34

Maths 
abhishek agrawal
gvvcxz

Maths 
Joyoti Banerjee
775
Respond to this Question
Similar Questions

mathematics
Suppose f(x) is a degree 8 polynomial such that f(2^i)=1/2^i for all integers 0≤i≤8. If f(0)=a/b, where a and b are coprime positive integers, what is the value of a+b? 
algebra 1 help please
4) a student score is 83 and 91 on her first two quizzes. write and solve a compound inequality to find possible values for a thord quiz score that would give anverage between 85 and 90. a. 85≤83+91+n/3 ≤90; 81≤n≤96 … 
Math (algebra)
Suppose a and b are positive integers satisfying 1≤a≤31, 1≤b≤31 such that the polynomial P(x)=x^3−ax^2+a^2b^3x+9a^2b^2 has roots r, s, and t. Given that there exists a positive integer k such that (r+s)(s+t)(r+t)=k^2, … 
Math
Find the largest possible degree n≤1000 of a polynomial p(x) such that: p(i)=i for every integer i with 1≤i≤n p(−1)=1671 p(0) is an integer (not necessarily 0). 
Math
A smooth partition of the integer n is a set of positive integers a 1 ,a 2 ,…a k such that 1. k is a positive integer, 2. a 1 ≤a 2 ≤⋯≤a k , 3. ∑ k i=1 a i =n, and 4. a k −a 1 ≤1. Determine … 
geometry
A smooth partition of the integer n is a set of positive integers a1,a2,…ak such that 1. k is a positive integer, 2. a1≤a2≤⋯≤ak, 3. ∑ki=1ai=n, and 4. ak−a1≤1. Determine how many smooth partitions … 
PRE  CALCULUS
Eliminate the parameter t. Find a rectangular equation for the plane curve defined by the parametric equations. x = 6 cos t, y = 6 sin t; 0 ≤ t ≤ 2π A. x2  y2 = 6; 6 ≤ x ≤ 6 B. x2  y2 = 36; 6 ≤ … 
Differentials (calc)
Solve the Poisson equation ∇^2u = sin(πx) for 0 ≤ x ≤ 1and 0 ≤ y ≤ 1 with boundary conditions u(x, 0) = x for 0 ≤ x ≤ 1/2, u(x, 0) = 1 − x for 1/2 ≤ x ≤ 1 and 0 everywhere … 
Calculus
f is a continuous function with a domain [−3, 9] such that f(x)= 3 , 3 ≤ x < 0 x+3 , 0 ≤ x ≤ 6 3 , 6 < x ≤ 9 and let g(x)= ∫ f(t) dt where a=2 b=x On what interval is g increasing? 
statistic
Given that z is a standard normal random variable, compute the following probabilities (to 4 decimals). 1. P(1.92 ≤ z ≤ 0.43) 2.P(0.57 ≤ z ≤ 1.24) 3.P(1.75 ≤ z ≤ 1.02)