ALGEBRA!!!!
posted by bob .
How many distinct integer values of N between 1 and 1000 are there, such that
N=4a+b+4c and 2N=7a+6b+7c for some positive integers a, b and c?

ALGEBRA!!!! 
Anonymous
21

ALGEBRA!!!! 
Akhu
58

ALGEBRA!!!! 
Anirudh Mahapatro
58
Respond to this Question
Similar Questions

math, algebra
2a+2ab+2b I need a lot of help in this one. it says find two consecutive positive integers such that the sum of their square is 85. how would i do this one i have no clue i know what are positive integers.but i don't know how to figure … 
discrete math
Find how many positive integers with exactly four decimal digits, that is, positive integers between 1000 and 9999 inclusive, have the following properties: (a) are divisible by 5 and by 7. (b) have distinct digits. (c) are not divisible … 
algebra
Find the sum of all positive integers c such that for some prime a and a positive integer b, a^b+b^a=c^a. 
maths
f(x) is a polynomial with integer coefficients and degree at most 10. There are N distinct integer values for which f(n)=2, and M distinct integer values for which f(m)=−2. What is the maximum possible value of NM? 
geometry!!! please help me!!!!
Determine the least positive integer n for which the following condition holds: No matter how the elements of the set of the first n positive integers, i.e. {1,2,…n}, are colored in red or blue, there are (not necessarily distinct) … 
Math algebra
Let N be the sum of all positive integers q of the form q=p^k with prime p, such that for at least four different integer values of x from 1 to q, x^3−3x≡123(modq). What are the last 3 digits of N? 
MATH combinatorics HELP!!!!!
Determine the least positive integer n for which the following condition holds: No matter how the elements of the set of the first n positive integers, i.e. {1,2,…n}, are colored in red or blue, there are (not necessarily distinct) … 
Math (algebra)
For every positive integer n, consider all monic polynomials f(x) with integer coefficients, such that for some real number a x(f(x+a)−f(x))=nf(x) Find the largest possible number of such polynomials f(x) for a fixed n<1000. 
Math (algebra)
Let x,y be complex numbers satisfying x+y=a xy=b, where a and b are positive integers from 1 to 100 inclusive. What is the sum of all possible distinct values of a such that x^3+y^3 is a positive prime number? 
maths
the non decreasing sequence of odd integers {a1, a2, a3, . . .} = {1,3,3,3,5,5,5,5,5,...} each positive odd integer k appears k times. it is a fact that there are integers b, c, and d such that, for all positive integers n, añ = …