Maths!!!
posted by OIan .
4 distinct integers p, q, r and s are chosen from the set {1,2,3,…,16,17}. The minimum possible value of (p/q)+(r/s) can be written as a/b, where a and b are positive, coprime integers. What is the value of a+b?
Respond to this Question
Similar Questions

Math
Let S(n) denote the sum of digits of the integer n. Over all positive integers, the minimum and maximum values of S(n)/S(5n) are X and Y, respectively. The value of X+Y can be written as a/b , where a and b are coprime positive integers. … 
Trigonometry
Let S be the sum of all the possible values of sin x that satisfy the following equation: 52cos^2(x)7sin(x) = 0 S can be written as a/b, where a and b are coprime positive integers. What is the value of a + b? 
Algebra
Joe picks 2 distinct numbers from the set of the first 14 positive integers S = \{1,2,3,\ldots,14\}. The probability that the sum of the 2 numbers is divisible by 3 can be expressed as \frac{a}{b}, where a and b are coprime positive … 
Maths
The value of y that minimizes the sum of the two distances from (3,5) to (1,y) and from (1,y) to (4,9) can be written as a/b where a and b are coprime positive integers. Find a + b. 
maths
What is the largest possible integer that can be chosen as one of five distinct positive integers whose average is 10? 
mathematics
4 distinct integers p, q, r and s are chosen from the set {1,2,3,…,16,17}. The minimum possible value of p/q+r/s can be written as ab, where a and b are positive, coprime integers. What is the value of a+b? 
MAths
4 distinct integers p, q, r and s are chosen from the set {1,2,3,…,16,17}. The minimum possible value of p/q+r/s can be written as a/b, where a and b are positive, coprime integers. What is the value of a+b? 
math
Let Pn be the set of all subsets of the set [n]={1,2,…,n}. If two distinct elements of P5 are chosen at random, the expected number of elements (of [n]) that they have in common can be expressed as a/b where a and b are coprime positive … 
Maths
Let x,y,z be nonnegative real numbers satisfying the condition x+y+z=1. The maximum possible value of x^3y^3+y^3z^3+z^3x^3 has the form ab where a and b are positive, coprime integers. What is the value of a+b? 
algebra!!!! please help me!!!!
The smallest possible positive value of 1−[(1/w)+(1/x)+(1/y)+(1/z)] where w, x, y, z are odd positive integers, has the form a/b, where a,b are coprime positive integers. Find a+b.