physical science

posted by .

The orbital velocity of an earth satellite in an orbit 400 mi above the earth?

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. physcial science

    How do I calculate the orbital velocity of a satellite that is 400 miles above the earth?
  2. Physics

    A satellite of mass 220 kg is launched from a site on Earth's equator into an orbit at 200 km above the surface of Earth. (a) Assuming a circular orbit, what is the orbital period of this satellite?
  3. Math

    A satellite is launched into orbit 200 kilometers above the Earth.The orbital velocity of a satellite is given by the formula v=√GmE/r, where v is the velocity in meters per second, G is a given constant, mE is the mass of Earth, …
  4. Physics

    A satellite of mass 210 kg is launched from a site on Earth's equator into an orbit at 210 km above the surface of Earth. (a) Assuming a circular orbit, what is the orbital period of this satellite?
  5. Math WORD PROBLEM

    The time in hours it takes a satellite to complete an orbit around the earth varies directly as the radius of the orbit (from the center of the earth) and inversely as the orbital velocity. If a satellite completes an orbit 860 miles …
  6. physics

    A satellite of mass 225 kg is launched from a site on Earth's equator into an orbit at 200 km above the surface of Earth. (The mass of the Earth is 5.98 1024 kg, and the radius of the Earth is 6.38 103 km.) (a) Assuming a circular …
  7. physics

    A satellite of mass 205 kg is launched from a site on Earth's equator into an orbit at 200 km above the surface of Earth. (a) Assuming a circular orbit, what is the orbital period of this satellite?
  8. physics

    NASA launches a satellite into orbit at a height above the surface of the Earth equal to the Earth's mean radius. The mass of the satellite is 550 kg. (Assume the Earth's mass is 5.97 1024 kg and its radius is 6.38 106 m.) (a) How …
  9. math

    The orbital velocity of a satellite is given by v=√GM/R+h, where G= 6.67*10^-11 Nm^2kg^2, is the Universal Gravitational Constant, M=6*10^24 kg, is the mass of Earth, R=6.38*10^3 km, the orbit of the satellite, and h is artificial …
  10. math

    The orbital velocity of a satellite is given by v=√GM/R+h, where G= 6.67*10^-11 Nm^2kg^2, is the Universal Gravitational Constant, M=6*10^24 kg, is the mass of Earth, R=6.38*10^3 km, the orbit of the satellite, and h is artificial …

More Similar Questions