# Math

posted by .

if alpha and beta are the zeroes of the polynomial f(x)=x^2-3x-2 , find a quadratic polynomial whose zeroes are 1/2(alpha)+beta and 1/2(beta)+alpha ?

Please... i have no idea !!

• Math -

The zeroes of the polynomial x ^ 2 - 3 x - 2 are

[ 3 - sqrt ( 17 ) ] / 2

[ 3 + sqrt ( 17 ) ] / 2

so:

alpha = [ 3 - sqrt ( 17 ) ] / 2

beta = [ 3 + sqrt ( 17 ) ] / 2

x1 = alpha / 2 + beta =

[ 3 - sqrt ( 17 ) ] / ( 2 * 2 ) + [ 3 + sqrt ( 17 ) ] / 2 =

[ 3 - sqrt ( 17 ) ] / 4 + 2 * [ 3 + sqrt ( 17 ) ] / ( 2 * 2 ) ] =

[ 3 - sqrt ( 17 ) ] / 4 + 2 * [ 3 + sqrt ( 17 ) ] / ( 2 * 2 ) =

[ 3 - sqrt ( 17 ) ] / 4 + [ 6 + 2 sqrt ( 17 ) ] / 4 =

[ 3 - sqrt ( 17 ) + 6 + 2 sqrt ( 17 ) ] / 4 =

[ sqrt ( 17 ) + 9 ] / 4

beta / 2 + alpha = alpha / 2 + beta =

[ 3 + sqrt ( 17 ) ] / ( 2 * 2 ) + [ 3 - sqrt ( 17 ) ] / 2 =

[ 3 + sqrt ( 17 ) ] / 4 + 2 * [ 3 - sqrt ( 17 ) ] / ( 2 * 2 ) ] =

[ 3 + sqrt ( 17 ) ] / 4 + 2 * [ 3 - sqrt ( 17 ) ] / ( 2 * 2 ) =

[ 3 + sqrt ( 17 ) ] / 4 + [ 6 - 2 sqrt ( 17 ) ] / 4 =

[ 3 + sqrt ( 17 ) + 6 - 2 sqrt ( 17 ) ] / 4 =

[ - sqrt ( 17 ) + 9 ] / 4

Now you must use Lagrange resolvents:

y = a x ^ 2 + b x + c = a ( x - x1 ) ( x - x2 )

in this case a = 1 so :

y = ( x - x1 ) ( x - x2 )

y = ( 1 / 4 )[ sqrt ( 17 ) + 9 ] * ( 1 / 4 )[ - sqrt ( 17 ) + 9 ]

y = [ x ^ 2 - 18 x + 64 ] / 16

y = x ^ 2 / 16 - 9 x / 8 + 4

• Math -

x2 = beta / 2 + alpha =

[ 3 + sqrt ( 17 ) ] / ( 2 * 2 ) + [ 3 - sqrt ( 17 ) ] / 2 =

[ 3 + sqrt ( 17 ) ] / 4 + 2 * [ 3 - sqrt ( 17 ) ] / ( 2 * 2 ) ] =

[ 3 + sqrt ( 17 ) ] / 4 + 2 * [ 3 - sqrt ( 17 ) ] / ( 2 * 2 ) =

[ 3 + sqrt ( 17 ) ] / 4 + [ 6 - 2 sqrt ( 17 ) ] / 4 =

[ 3 + sqrt ( 17 ) + 6 - 2 sqrt ( 17 ) ] / 4 =

[ - sqrt ( 17 ) + 9 ] / 4

• Math -

Thanks :) I understood (Y)

## Respond to this Question

 First Name School Subject Your Answer

## Similar Questions

1. ### maths

if alpha and beta are the zeros of the polynomial 2x^2-4x+5 then find the values of (i)alpha^2+beta^2 (ii)1/alpha^2+1/beta^2 (iii)(r)alpha/beta+(r)beta/alpha (iv)alpha^-1+beta^-1
2. ### Math ( Polynomial )

This time three questions - 1. If (x^2 - 1 ) is a factor of polynomial ax^4 + bx^3 + cx^2 + dx + e, show that a + c + e = b + d = 0. 2. Let R1 and R2 be the remainders when polynomials x^3 + 2x^2 - 5ax - 7 and x^ 3 + ax^2 - 12 x + …
3. ### Math ( Polynomial )

This time three questions - 1. If (x^2 - 1 ) is a factor of polynomial ax^4 + bx^3 + cx^2 + dx + e, show that a + c + e = b + d = 0. 2. Let R1 and R2 be the remainders when polynomials x^3 + 2x^2 - 5ax - 7 and x^ 3 + ax^2 - 12 x + …
4. ### Math

If alpha and beta are the zeros of the polynomial ax^2 + bx + c then evaluateA. (alpha)^2 / beta + (beta)^2 / alpha B. alpha^2 .beta + alpha.beta^2 C. 1/(alpha)^4 + 1/(beta)^4. Please work the complete solution.
5. ### math

verify the relationship between the zeroes and the coefficient in the polynomial f (x)=root 4x square +5x-2 root3 if alpha and beta are the zeroes of the polynomial x*2+x-2 . Find the values of 1/alpha -1/beta. Find the value alphacube …
6. ### math

If alpha and beta are the zeroes of the polynomial f (x) = 5y square -7y + 1. Find another polynomial whose zeroes are 2 alpha / beta and 2beta / alpha Whose zeroes ar 1/ 2alpha + beta and 1/2beta + alpha
7. ### Maths

If alpha amd beta are zeroes of polynomial x^2+8x-6 form the polynomial whose zeroes are 1 /2alpha and 1/2beta.
8. ### kvno.1

if alpha ,beta are the zeroes of a polynomial,such that alpha+beta=6 and alpha into beta=4 ,then write the polynomial.
9. ### If alpha

If alpha& beta are the zeroes of the polynomial 2x2-7x+3. Find the sum of the reciprocal of its zeroes
10. ### Math

If alpha, beta are the zeroes of x2-2x+3, find a quadratic equation whose roots are (alpha-1)(beta+1), (beta-1)(beta+1)

More Similar Questions