# College Algebra

posted by .

a box with an open top is constructed from a rectangular piece of cardboard with dimensions 14 inches by 18 inches by cutting out and discarding equal squares of side x at each corner and then folding up the sides as in the figure. The cost to create such a box is 2.50 per square foot for the bottom and 1.50 per square foot for the sides

a. Express the cost of the box as a function of x.

b. Graph c=c(x). For what value of x is C smallest?

## Similar Questions

1. ### algebra

An open-top box is to be constructed from a 6 foot by 8 foot rectangular cardboard by cutting out equal squares at each corner and the folding up the flaps. Let x denote the length of each side of the square to be cut out. a)
2. ### math

An open-top box is to be constructed from a 6 foot by 8 foot rectangular cardboard by cutting out equal squares at each corner and the folding up the flaps. Let x denote the length of each side of the square to be cut out. a)
3. ### calc

by cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, the cardboard may be turned into an open box. if the cardboard is 16 inches long and 10 inches wide, find the …
4. ### Math

A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions 12 in by 12 in by cutting out equal squares of side x at each corner and then folding up the sides as in the figure. Express the volume …
5. ### math

A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions W inches by L inches by cutting out equal squares of side x at each corner and then folding up the sides. (W = 12 in. and L = 20 in). …
6. ### Algebra 2

A box with no top is to be constructed from a piece of cardboard whose length measures 12 inches more than its width. the box is formed by cutting squares that measures 4 inches on each sides from 4 corners and then folding up the …
7. ### calculus optimization problem

by cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. if the cardboard is 30 inches long and 14 inches wide find the dimensions of the box …
8. ### Algebra

A box with no top is to be constructed from a piece of cardboard whose length measures 6 inch more than its width. The box is to be formed by cutting squares that measure 2 inches on each side from the four corners an then folding …
9. ### Math

The length of a piece of cardboard is two inches more than its width. an open box is formed by cutting out 4 inch squares from each corner and folding the sides. If the volume of the box is 672 cubic inches, find the dimensions.
10. ### Calculus 1

A box with an open top is to be constructed from a rectangular piece of cardboard with dimensions 18 in. by 30 in. by cutting out equal squares of side x at each corner and then folding up the sides as in the figure. Express the volume …

More Similar Questions