calculus

posted by .

If the ∫_8 f(x)dx=22
0

and ∫3 f(x) dx =9, then find
0

∫ 8 f(x) dx
3

  • calculus -

    integral from 3 to 8 = integral from 0 to 8 - integral from 0 to 3

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Calculus

    Find the integral by substitution ∫ [(16 x3)/(x4 + 5)] dx ∫[ 4 x/(√{x2 + 3})] dx ∫ 8 x2 e4 x3 +7 dx PLEASE help with all three. i'd really appreciate it
  2. Help Evaluating Integrals

    1.) ∫ (2)/(x-4) dx 2.) ∫ sec^2x tanx dx 3.) ∫ 2 csc^2 xdx 4.) ∫ (3) / sqtr(x+3) dx 5.) ∫ (2x-1) / (x^2 - x)
  3. Integral Help

    1.) ∫ (sin x) / (cos^2 x) dx 2.) ∫ (1) / (1+x^2) dx 3.) ∫ xe^x^2 dx 4.) ∫ x^2 sinx dx 5.) ∫ (lnx) / (x) dx
  4. Calculus

    I'm having trouble reversing the order of integration of ∫∫dxdy from a=0 to b=2(3)^(1/2) for x and c=y^(2/6) to d=(16-y^2)^(1/2) for y. I graphed the region of integration and that still doesn't really help me. i got approximately …
  5. Calculus 2 correction

    I just wanted to see if my answer if correct the integral is: ∫(7x^3 + 2x - 3) / (x^2 + 2) when I do a polynomial division I get: ∫ 7x ((-12x - 3)/(x^2 + 2)) dx so then I use u = x^2 + 2 du = 2x dx 1/2 du = x dx = ∫7x …
  6. calculus (check my work please)

    Not sure if it is right, I have check with the answer in the book and a few integral calculators but they seem to get a different answer ∫ sec^3(x)tan^3(x) dx ∫ sec^3(x)tan(x)(sec^2(x)-1) dx ∫ tan(x)sec(x)[sec^4(x)-sec^2(x)] …
  7. Calculus 2 Trigonometric Substitution

    I'm working this problem: ∫ [1-tan^2 (x)] / [sec^2 (x)] dx ∫(1/secx)-[(sin^2x/cos^2x)/(1/cosx) ∫cosx-sinx(sinx/cosx) ∫cosx-∫sin^2(x)/cosx sinx-∫(1-cos^2(x))/cosx sinx-∫(1/cosx)-cosx sinx-∫secx-∫cosx …
  8. Calculus

    Alright, I want to see if I understand the language of these two problems and their solutions. It asks: If F(x) = [given integrand], find the derivative F'(x). So is F(x) just our function, and F'(x) our antiderivative?
  9. Calculus III

    Use symmetry to evaluate the double integral ∫∫R(10+x^2⋅y^5) dA, R=[0, 6]×[−4, 4]. (Give your answer as an exact number.) ∫∫R(10+x^2⋅y^5) dA=
  10. Calculus

    Which of the following integrals represents the volume of the solid formed by revolving the region bounded by y=x^3, y=1, and x=2 about the line y=10?

More Similar Questions