# Calculus Problem

posted by .

I need to find the integral of e^(2x)sin(3x)

I used integration by parts and I let u=e^2x and dv=sin(3x)

• Calculus Problem -

u = e^(2x)
du/dx = 2 e^(2x)
du = 2 e^(2x) dx

dv = sin(3x) dx
v = -(1/3) cos(3x)

∫e^(2x)sin(3x) dx
= (e^(2x) )(-1/3)cos(3x) - ∫(-2/3)(e^(2x))(cos(3x) ) dx
=(e^(2x) )(-1/3)cos(3x) + (2/3)∫( e^(2x) (cos(3x)) dx

do it again on that last part:
let u = e^2x
du/dx = 2e^(2x)

let dv = cos(3x) dx
v = (1/3)sin(3x)
and ∫( e^(2x) (cos(3x)) dx
= (1/3)e^(2x) (sin(3x)) - ∫(1/3)sin(3x) (2e^(2x)) dx
= (1/3)e^(2x) (sin(3x)) - (2/3) ∫e^(2x) sin(3x) dx

but look at that last part, isn't that what we started with on the original left side of our equation

let ∫e^(2x)sin(3x) dx = A
so we have

A = (e^(2x) )(-1/3)cos(3x) + (2/3)[(1/3)e^(2x) (sin(3x)) - (2/3) A ]
A = (-1/3)(e^(2x)) (cos(3x) + (2/9)e^(2x) sin(3x) - (4/9)A
times 9
9A = -3 e^(2x) cos(3x) + 2 e^(2x) sin(3x) - 4A
13A = -3 e^(2x) cos(3x) + 2 e^(2x) sin(3x)
A = (-1/13) ( 3 e^(2x)cos(3x) - 2 e^(2x) sin(3x)

∫e^(2x)sin(3x) dx = (-1/13) ( 3 e^(2x)cos(3x) - 2 e^(2x) sin(3x) )

or as Wolfram has it

(1/13) ( 2 e^(2x) sin(3x) - 3 e^(2x)cos(3x) )

http://integrals.wolfram.com/index.jsp?expr=e%5E%282x%29sin%283x%29+&random=false

• Calculus Problem -

Thank you so much for showing the steps, I really appreciate the help! (:

## Similar Questions

1. ### trig integration

s- integral endpoints are 0 and pi/2 i need to find the integral of sin^2 (2x) dx. i know that the answer is pi/4, but im not sure how to get to it. i know: s sin^2(2x)dx= 1/2 [1-cos (4x)] dx, but then i'm confused. The indefinite …

3. ### Integral

That's the same as the integral of sin^2 x dx. Use integration by parts. Let sin x = u and sin x dx = dv v = -cos x du = cos x dx The integral is u v - integral of v du = -sinx cosx + integral of cos^2 dx which can be rewritten integral …
4. ### Mathematics - Trigonometric Identities

Let y represent theta Prove: 1 + 1/tan^2y = 1/sin^2y My Answer: LS: = 1 + 1/tan^2y = (sin^2y + cos^2y) + 1 /(sin^2y/cos^2y) = (sin^2y + cos^2y) + 1 x (cos^2y/sin^2y) = (sin^2y + cos^2y) + (sin^2y + cos^2y) (cos^2y/sin^2y) = (sin^2y …
5. ### TRIG!

Posted by hayden on Monday, February 23, 2009 at 4:05pm. sin^6 x + cos^6 x=1 - (3/4)sin^2 2x work on one side only! Responses Trig please help! - Reiny, Monday, February 23, 2009 at 4:27pm LS looks like the sum of cubes sin^6 x + cos^6 …
6. ### math

I'm trying to find the convolution f*g where f(t)=g(t)=sin(t). I set up the integral and proceed to do integration by parts twice, but it keeps working out to 0=0 or sin(t)=sin(t). How am I supposed to approach it?