Physics

posted by .

A popular amusement park ride looks like a huge cylinder of radius 3 m, where people stand up along the vertical walls on top of a floor which can drop away. The cylinder begins to rotate faster and faster, and when it reaches its highest speed the floor drops away. Clearly static friction is holding the people in place against the wall. Assuming that the coefficient of static friction is 0.5, what are the minimum rotations per second the cylinder must make so that the people are safe?

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. physics-angular speed

    If the coefficient of friction is 0.41 and the cylinder has a radius of 2.5 m, what is the minimum angular speed of the cylinder so that the people don't fall out?
  2. Physics

    The Wall of Death in an amusement park is comprised of a vertical cylinder that can spin around the vertical axis. Riders stand against the wall of the spinning cylinder and the floor falls away leaving the riders held up by friction. …
  3. Physics

    In a popular amusement park ride, a cylinder of radius 2.19 meters is set in rotation at an angular speed of 5.09 rad/s. The floor then drops away, leaving the riders suspended against the wall in a vertical position. What minimum …
  4. College Physics

    The rotor is an amusement park ride where people stand against the inside of a cylinder. Once the cylinder is spinning fast enough, the floor drops out. A-What force keeps the people from falling out the bottowm of the ride?
  5. physics

    In an old-fashioned amusement park ride, passengers stand inside a 3.0-m-tall, 5.0-m-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. Then the floor on which the …
  6. Physics

    In a popular amusement-park ride, a cylinder of radius 3.00 m is set in rotation at an angular speed of 5.00 rad/s (counter-clockwise). The floor then drops away, leaving the riders suspended against the wall in a vertical position. …
  7. physics

    An amusement park ride consists of a large vertical cylinder that spins around its axis fast enough such that any person inside is held up against the wall when the floor drops away. The coefficient of static friction between person …
  8. Physics

    In an old fashioned amusement park ride, passengers stand inside a 5.0-m diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about the vertical axis. Then, the floor that the passengers are …
  9. physics

    In a popular amusement park ride, a rotating cylinder of radius 2.90 meters is set into rotation with a period of 2.28 seconds. The floor then drops away, leaving the riders suspended against the wall in a vertical position.
  10. Physics

    In a certain amusement-park ride, riders stand with their backs against the wall of a spinning vertical cylinder. The floor falls away and the riders are held up by friction. If the radius of the cylinder is 4.2 m, find the minimum …

More Similar Questions