Math
posted by Bob .
Find the general solution F(x,y)=C of the differential equation:
(3(x^2)y8x)dy+(3xy^28y)dx=0
Where F(x,y)=___________________
Respond to this Question
Similar Questions

calculusdifferential equation
Consider the differential equation: (du/dt)=u^2(t^3t) a) Find the general solution to the above differential equation. (Write the answer in a form such that its numerator is 1 and its integration constant is C). u=? 
math
find general solution in implicit form of differential equation dy/dx= 2(e^xe^x)/y^2(e^x+e^x)^4 (y>0) 
calculus differential equation
Find in implicit form the general solution of differential equation dy/dx=2(e^xe^x)/y^2(e^x+e^x)^4 with (y>0). I know this requires a seperation of variables but I beyond that I am confused by how.Thanks. 
calculus differential equation
Find in implicit form the general solution of differential equation dy/dx=2(e^xe^x)/y^2(e^x+e^x)^4 with (y>0). I know this requires a seperation of variables but I beyond that I am confused by how.Thanks. 
Differential equation Math
Find the general solution of the following system of equation? 
calculus
verify that y=c/x^2 is a general solution of the differential equation y'+(2/x) y=06y=0 then find a particular solution of the differential equation that satisfies the side condition y(1)=2 
Math DE
Find the general solution of the differential equation dy/dx4y= 5y^2 
ordinary differential equation
consider the differential equation d^3x/dt^3  9(d^2x/dt^2)+ 27(dx/dt) 27x = c0s t +sin t + te^(3t) a) show that characteristic equation of the differential equation is (m3)^3 =0 (b) Hence, find the general solution of the equation. 
Differential equations,Calculus
So I have the following differential equation. The general solution I have is: t=k(1/r)+c I now need to find the particular solution when t=0 and the radius (r) = 1cm. So k is a constant which is approx 3.9 (5/4pi) So for the particular … 
Math (Calc) (Differential Equation Solution)
Some of the curves corresponding to different values of C in the general solution of the differential equation are shown in the graph. Find the particular solution that passes through the point (0, 2). y(x^2+y) = C 2xy + (x^2+2y)y' …