Calculus

posted by .

A trough is triangular in cross section, an isosceles triangle with sides of 12 inches, and a top of 10 inches. The trough is 40 inches long. How fast is the depth changing if you are pumping one cubic foot per minute into the trough?

I am having a hard time getting it in terms of h.

  • Calculus -

    Make a sketch of the cross-section of the isosceles triangle. Draw it some water level, letting the height be h and letting the width of the water level be x
    by similar triangles
    x/h = 10/12
    12x = 10h
    x = 5h/6

    volume of water = 40(area of triangle)
    = 40(1/2)(x)h
    = 20(5h/6)(h) = 50/3 h^3

    V = (50/3) h^3
    dV/dt = 50 h^2 dh/dt
    have to watch our units, 1 cubic foot = 12^3 or 1728 cubic inches

    1728 = 50 h^2 dh/dt
    dh/dt = 1728/(50h^2) = 864/25 inches/minute

  • Calculus -

    wow I was headed that way didn't watch units Thank You very much

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. math

    The trough is in the shape of a triangular prism. It is 5 ft long and its vertical cross sections are isosceles triangles with base 2ft and height 3ft. Water is being siphoned out of the trough at the rate of 2 cubic feet per minute. …
  2. math

    The trough is in the shape of a triangular prism. It is 5 ft long and its vertical cross sections are isosceles triangles with base 2ft and height 3ft. Water is being siphoned out of the trough at the rate of 2 cubic feet per minute. …
  3. Calculus

    A trough is 12 ft long and has ends that are isosceles triangles that are 1 ft high and 1.5 ft wide. If the trough is being filled at a rate of 11 cubic feet per minute, how fast is the height of the water increasing when the height …
  4. calculus

    6. A trough is in the shape of a triangular prism. It is 5 feet long and its vertical cross sections are isosceles triangles with base 2 feet and height 3 feet. Water is being siphoned out of the trough at the rate of 2 cubic feet …
  5. Calculus

    A trough is 5 meters long, 1 meters wide, and 4 meters deep. The vertical cross-section of the trough parallel to an end is shaped like an isoceles triangle (with height 4 meters, and base, on top, of length 1 meters). The trough is …
  6. Calculus

    A trough is 5 meters long, 1 meters wide, and 4 meters deep. The vertical cross-section of the trough parallel to an end is shaped like an isoceles triangle (with height 4 meters, and base, on top, of length 1 meters). The trough is …
  7. calculus

    A trough is 10 feet long and 1 foot high. The vertical cross-section of the trough parallel to an end is shaped like the graph of y=x10 from x=−1 to x=1 . The trough is full of water. Find the amount of work in foot-pounds required …
  8. Calculus

    A trough is 3 feet long and 1 foot high. The vertical cross-section of the trough parallel to an end is shaped like the graph of x^2 from -1 to 1 . The trough is full of water. Find the amount of work required to empty the trough by …
  9. math

    A trough is 2 feet wide and 8 feet long with a cross-section that is triangular (equilateral). Water is being pumped in at 2 gallons per minute. How fast is the depth rising when it is 3 inches deep?
  10. calculus

    A trough is 9 feet long and 1 foot high. The vertical cross-section of the trough parallel to an end is shaped like the graph of y=x4 from x=−1 to x=1 . The trough is full of water. Find the amount of work in foot-pounds required …

More Similar Questions