# physics

posted by .

If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the curve (a real problem on icy mountain roads).
(a) Calculate the ideal speed to take a 105-m radius curve banked at 13.0°.

km/h

(b) What is the minimum coefficient of friction needed for a frightened driver to take the same curve at 20.0 km/h?

• physics -

help

## Similar Questions

1. ### Physics

Hi everyone, finished all my utexas physics homework, save this last question... I don't quite why I'm not getting the right answer. Any help offered will be appreciated, it could lead me to the right answer :) P.S.---- I've already …
2. ### Physics

Hi everyone, finished all my utexas physics homework, save this last question... I don't quite why I'm not getting the right answer. Any help offered will be appreciated, it could lead me to the right answer :) P.S.---- I've already …
3. ### physics

meerany A flat (unbanked) curve on a highway has a radius of 220.0 Ill. A car rounds the curve at a speed of 25.0 m/s. (a) What is the minimum coefficient of friction that will prevent sliding?
4. ### physics

Two banked curves have the same radius. Curve A is banked at 11.0 °, and curve B is banked at an angle of 17.4 °. A car can travel around curve A without relying on friction at a speed of 15.3 m/s. At what speed can this car travel …
5. ### physics

Two banked curves have the same radius. Curve A is banked at 11.0 °, and curve B is banked at an angle of 17.4 °. A car can travel around curve A without relying on friction at a speed of 15.3 m/s. At what speed can this car travel …
6. ### Physics

Two banked curves have the same radius. Curve A is banked at an angle of 11°, and curve B is banked at an angle of 16°. A car can travel around curve A without relying on friction at a speed of 18.5 m/s. At what speed can this car …
7. ### Physics

Two banked curves have the same radius. Curve A is banked at an angle of 11°, and curve B is banked at an angle of 16°. A car can travel around curve A without relying on friction at a speed of 18.5 m/s. At what speed can this car …
8. ### Physics

A curve of radius 59.9 m is banked so that a car of mass 1.4 Mg traveling with uniform speed 50 km/hr can round the curve without relying on friction to keep it from slipping on the surface. At what angle is the curve banked?
9. ### physics

If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the curve (a real problem on icy mountain roads). (a) Calculate the ideal speed to take a 95 m radius curve …
10. ### physics

Curve A is banked at 11.2 °, and curve B is banked at an angle of 15.2 °. A car can travel around curve A without relying on friction at a speed of 14.5 m/s. At what speed can this car travel around curve B without relying on friction?

More Similar Questions