calculus

posted by .

A conical water tank with vertex down has a radius of 12 feet at the top and is 23 feet high. If water flows into the tank at a rate of 20 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 17 feet deep?

  • calculus -

    at a depth of h ft, the radius of the water surface is r=(12/23)*h ft

    v = 1/3 pi r^2 h
    = pi/3 * (12/23)^2 * h^3

    dv/dt = pi(12/23)^2 h^2 dh/dt
    20 = pi(12/23)^2 (17)^2 dh/dt
    dh/dt = 2645 / 10404pi = 0.081 ft/min = 0.97 in/min

  • calculus -

    3+

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. calculus

    A conical tank( with vertex down) is 10 feet across the top and 18 feet deep. As the water flows into the tank, the change is the radius of the water at a rate of 2 feet per minute, find the rate of change of the volume of the water …
  2. Math

    A conical water tank with vertex down has a radius of 10 feet at the top and is 29 feet high. If water flows into the tank at a rate of 10 , how fast is the depth of the water increasing when the water is 17 feet deep?
  3. calculus

    A 24ft high conical water tank has its vertex on the ground and radius of the base is 10 ft. If water flows into the tank at a rate of 20 ft3/min, how fast is the depth of water increasing when the depth of the water is 20 ft?
  4. Calculus

    A water tank is shaped like an inverted right circular cone with a base radius of 14 feet and a height of 25 feet high. If water flows into the tank at a rate of 20 ft^3/min, how fast is the depth of the water increasing when the water …
  5. math - calc

    A conical water tank with vertex down has a radius of 12 feet at the top and is 26 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet …
  6. math - calc

    A conical water tank with vertex down has a radius of 12 feet at the top and is 26 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet …
  7. Math

    A conical water tank with vertex down has a radius of 10 feet at the top and is 22 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 14 feet …
  8. Math

    A conical water tank with vertex down has a radius of 10 feet at the top and is 22 feet high. If water flows into the tank at a rate of 30 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 14 feet …
  9. Calculus (math)

    A conical water tank with vertex down has a radius of 12 feet at the top and is 23 feet high. If water flows into the tank at a rate of 20 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 12 feet …
  10. math

    A conical water tank with vertex down has a radius of 13 feet at the top and is 28 feet high. If water flows into the tank at a rate of 10 {\rm ft}^3{\rm /min}, how fast is the depth of the water increasing when the water is 17 feet …

More Similar Questions