physics
posted by Anonymous .
Two astronaut, as shown in the figure, each having a mass of 62.0 kg, are connected by a 12.00 m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum

Their angular velocity about the center of rotation is
w = V/R = 5.0/6 = 0.833 rad/s
The angular momentum is
2*M*w*R^2
where M is the mass of a single astronaut
Respond to this Question
Similar Questions

Physics (very long question)
Two astronauts (Fig. P8.68), each having a mass of 84.0 kg, are connected by a 10.0 m rope of negligible mass. They are isolated in space, moving in circles around the point halfway betwen them at a speed of 5.80 m/s. Treating the … 
physics
Two astronauts, each having a mass of 89.0 kg, are connected by a 10.0 m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.60 m/s. Treating the astronauts as … 
physics
Two astronaut, as shown in the figure, each having a mass of 62.0 kg, are connected by a 12.00 m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.00 m/s. Treating … 
physics
Two astronaut, as shown in the figure, each having a mass of 62.0 kg, are connected by a 12.00 m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.00 m/s. Treating … 
physcis
Two astronaut, as shown in the figure, each having a mass of 62.0 kg, are connected by a 12.00 m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.00 m/s. Treating … 
physics HELPP!!!!!!!
Two astronaut, as shown in the figure, each having a mass of 88.0 kg, are connected by a 10.00 m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 6.00 m/s. By … 
Physics
Two astronauts, each having a mass M are connected by a length of rope of length d have a negligible mass. They are isolated in space, orbiting their center of mass at an angular speed of รน0. By pulling on the rope, one of the astronauts … 
physics
Two astronauts, each having a mass of 78.5 kg, are connected by a 10.0m rope of negligible mass. They are isolated in space, moving in circles around the point halfway between them at a speed of 5.50 m/s. Treating the astronauts as … 
Physics
Two astronauts, each having a mass of 61.9 kg, are connected by a 14.7 m rope of negligible mass. They are isolated in space, orbiting their center of mass at speeds of 5.57 m/s. Calculate the magnitude of the initial angular momentum … 
Physics
An unfortunate astronaut loses his grip during a spacewalk and finds himself floating away from the space station, carrying only a rope and a bag of tools. First he tries to throw a rope to his fellow astronaut, but the rope is too …