ap chemistry

posted by .

1.95 mol of an ideal gas at 300 K and 3.00
atm expands from 16 L to 28 L and a final
pressure of 1.20 atm in two steps:
(1) the gas is cooled at constant volume
until its pressure has fallen to 1.20 atm, and
(2) it is heated and allowed to expand
against a constant pressure of 1.20 atm un-
til its volume reaches 28 L.
Which of the following is CORRECT?
1. w = 0 for (1) and w = −1.46 kJ for (2)
2. w = −4.57 kJ for (1) and w = −1.46 kJ
for (2)
3. w = 0 for the overall process
4. w = −4.57 kJ for the overall process
5. w = −6.03 kJ for the overall process

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Chemistry

    1 mol of an ideal gas expands under isothermal conditions (T=298.15K). The initial pressure and volume is 2.00 atm and 1.00L respectively, and the final pressure is 1.00 atm. Find the expansion work. The answer is w = -101.325 J. I …
  2. Urgent Chemistry!!

    1 mol of an ideal gas expands under isothermal conditions (T=298.15K). The initial pressure and volume is 2.00 atm and 1.00L respectively, and the final pressure is 1.00 atm. Find the expansion work. The answer is w = -101.325 J. I …
  3. chemistry

    ideal gas .450 mole initial pressure 16 atm and 290 K expands isothermally to a final pressure 1 atm. find work , if expansion is against a vacuum, a constant external pressure of 1 atm and reviersibly
  4. Thermochemistry

    Path A A sample of gas in a cylinder of volume 3.96 L at 327 K and 3.28 atm expands to 7.34 L by two different pathways. Path A is an isothermal, reversible expansion. Calculate the work for Path A. Answer in units of J. Path B Path …
  5. Chemistry

    Consider an ideal gas encloesd in a 1.00 L container at an internal pressure of 10.0 atm. Calculate the work, w, if the gas expands against a constant external pressure of 1.00 atm to a final volume of 20.0 L. w = ____ J now calculate …
  6. Chemistry

    Consider an ideal gas encloesd in a 1.00 L container at an internal pressure of 10.0 atm. Calculate the work, w, if the gas expands against a constant external pressure of 1.00 atm to a final volume of 20.0 L. w = ____ J now calculate …
  7. ap chemistry

    A sample of gas in a cylinder of volume 4.2 L at 316 K and 2.68 atm expands to 7.21 L by two different pathways. Path A is an isothermal, reversible expansion. Calculate the work for Path A. Answer in units of J Path B has two steps. …
  8. Physics

    Initially 1.200 mol of an ideal gas in a container occupies a volume of 3.50 l at a pressure of 3.30 atm with an internal energy U1 = 547.2 J. The gas is cooled at a constant volume until its pressure is 1.80 atm. Then it is allowed …
  9. physics

    Initially 1.200 mol of an ideal gas in a container occupies a volume of 3.50 l at a pressure of 3.30 atm with an internal energy U1 = 547.2 J. The gas is cooled at a constant volume until its pressure is 1.80 atm. Then it is allowed …
  10. Chemistry

    1) 0.19 litre of an ideal monatomic gas (Cv,m = 3R/2) initially at 83 °C and 47 atm pressure undergo an expansion against a constant external pressure of 1.19 atm, and do 2.3 kJ of work. The final pressure of the gas is 1.19 atm. …

More Similar Questions