calculus
posted by mike .
the region bounded by the quarter circle (x^2) + (y^2) =1. Find the volume of the following solid.
The solid whose base is the region and whose crosssections perpendicular to the xaxis are squares.

"The solid whose base is the region and whose crosssections perpendicular to the xaxis are squares."
means that z=2y
but since y=2sqrt(1x^2) (on the circle), so z=2sqrt(1x^2)
For example, at x=0, z=1,
at x=1, z=0.
The volume of the solid is then
∫∫∫dx dy dz
where the limits of integration are
for z: 0 to 2sqrt(1x^2)
for y: sqrt(1x^2) to sqrt(1x^2)
for x: 1 to 1
Respond to this Question
Similar Questions

Calculus
R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the crosssections of the solid perpendicular to the … 
Calculus
R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the crosssections of the solid perpendicular to the … 
Calculus
R is the region in the plane bounded below by the curve y=x^2 and above by the line y=1. (a) Set up and evaluate an integral that gives the area of R. (b) A solid has base R and the crosssections of the solid perpendicular to the … 
calculus
Find the volume of the solid whose base is the region bounded between the curve y=sec x and the xaxis from x=pi/4 to x=pi/3 and whose cross sections taken perpendicular to the xaxis are squares. 
Calculus
Find the volume of the solid whose base is the region bounded by y=x^2 and the line y=0 and whose cross sections perpendicular to the base and parallel to the xaxis are semicircles. 
Calculus
The functions f and g are given by f(x)=√x and g(x)=6x. Let R be the region bounded by the xaxis and the graphs of f and g, as shown in the figure in the link below. Please show your work. h t t p://goo.gl/jXIZD 1. Find the … 
Calculus
Let f and g be the functions given by f(x)=1+sin(2x) and g(x)=e^(x/2). Let R be the shaded region in the first quadrant enclosed by the graphs of f and g. A. The region R is the base of a solid. For this solid, the cross sections, … 
Calculus
Let M be the region under the graph of f(x) = 3/e^x from x=0 to x=5. A. Find the area of M. B. Find the value of c so that the line x=c divides the region M into two pieces with equal area. C. M is the base of a solid whose cross sections … 
Calculus
The base of a solid is the region bounded by the lines y = 5x, y = 10, and x = 0. Answer the following. a) Find the volume if the solid has cross sections perpendicular to the yaxis that are semicircles. b) Find the volume if the … 
Calculus
The base of a solid is a region located in quadrant 1 that is bounded by the axes, the graph of y = x^2  1, and the line x = 2. If crosssections perpendicular to the xaxis are squares, what would be the volume of this solid?