Trigonomety question

posted by .

How do you find the exact value of Sin(13pi)?

  • Trigonomety question -

    since 13π = 12π + π, it suffices to get the exact value of sin(π).

    adding multiples of 2π does not change the value of the sine function.

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Maths

    Solve for x (exact solutions): sin x - sin 3x + sin 5x = 0 ¦Ð ¡Ü x ¡Ü ¦Ð ---------------- Thankyou. I tried find the solutions on my graphics calculator but however, the question is to find the EXACT solution(s) for the equation …
  2. MATH

    1.)Find the exact solution algebriacally, if possible: (PLEASE SHOW ALL STEPS) sin 2x - sin x = 0 2.) GIVEN: sin u = 3/5, 0 < u < ï/2 Find the exact values of: sin 2u, cos 2u and tan 2u using the double-angle formulas. 3.)Use …
  3. trig

    determine an exact expression for the trigonometric function sin(13pi/12).
  4. trig

    find exact value cos(13pi/15)cos(-pi/5)-sin(13pi/15)sin(-pi/5)
  5. Math

    Find the exact value of Sin^-1(sin(13pi/15))
  6. Math- Trig

    1. Determine the exact value of cos^-1 (pi/2). Give number and explanaton. 2. Determine the exact value of tan^-1(sq. root 3). with explanation. 3. Determine exact value of cos(cos^-1(19 pi)). with explanation. 4. Determine the exact …
  7. Precalculus/Trig 6

    Find the exact value of the following trigonometric functions: sin(13pi), cos(14pi), tan(15pi)
  8. Trigonometry

    If cos(a)=1/2 and sin(b)=2/3, find sin(a+b), if 1) Both angles are acute; Answer: (sqrt(15)+2)/6 ii) a is an acute angle and pi/2 < b < pi; Answer: (2-sqrt(15))/6 2. Find the exact value of the six trigonometric functions of …
  9. Trig hep, please? Thank you!

    1. Find the exact value of sin(195(degrees)) 2. If cot2(delta)=5/12 with 0(<or =)2(delta)pi, find cos(delta), sin(delta) , tan(delta). 3.find the exact value of sin2(x) if cos(x)= 4/5. (X is in quadrant 1) 4. Find the exact value …
  10. Math

    3. find the four angles that define the fourth root of z1=1+ sqrt3*i z = 2 * (1/2 + i * sqrt(3)/2) z = 2 * (cos(pi/3 + 2pi * k) + i * sin(pi/3 + 2pi * k)) z = 2 * (cos((pi/3) * (1 + 6k)) + i * sin((pi/3) * (1 + 6k))) z^(1/4) = 2^(1/4) …

More Similar Questions