# calculus HELP

posted by .

Find the values of a and b that make f continuous everywhere.
f(x) =

(x2 − 4)/(x − 2) if x < 2
ax2 − bx + 3 if 2 ≤ x < 3
4x − a + b if x ≥ 3

solve for a and b? HELP ive tried everything

## Similar Questions

1. ### calculus

Find an equation for the surface consisting of all points P(x, y, z) equidistant from the point P(0, 1, 0) and the plane x = 3. Answer Choices: 1. y2 + z2 − 6x + 2y − 8 = 0 2. x2 + z2 + 6y − 2z − 8 = 0 3. y2 …
2. ### calculus

For what values of a and b that make the function f continuous everywhere. f(x)= {x−2x2−4 if x<2 ax2−bx−18 if 2< or =x<3 10x−a+b if x> or =3
3. ### Math: Pre Cal

f(x) = {−8 if −3 ≤ x ≤ 0 {x if 0 < x ≤ 3 Evaluate the given expressions. a)f(-1)= b)f(0)= (^Teach how to do this.) What is the formula?
4. ### biology

Given the part of the molecule shown below, can the underlined atom participate in a hydrogen bond with an approriate bonding partner?

Evaluate each of the following. Show all your calculations. a) f'(3) if f(x)  = x^4 − 3x b) f' (−2) if f(x) = 2x^3 + 4x^2 − 5x + 8 c) f" (1) if f(X)  = −3x^2 − 5x + 7 …
6. ### calculus (gr 12)

Evaluate each of the following. Show all your calculations. a) f'(3) if f(x)  = x^4 − 3x b) f' (−2) if f(x) = 2x^3 + 4x^2 − 5x + 8 c) f" (1) if f(X)  = −3x^2 − 5x + 7 …
7. ### calculus (gr 12)

Evaluate each of the following. Show all your calculations. a) f'(3) if f(x)  = x^4 − 3x b) f' (−2) if f(x) = 2x^3 + 4x^2 − 5x + 8 c) f" (1) if f(X)  = −3x^2 − 5x + 7 …
8. ### math

Consider the following 6 relations on the set of real numbers: A) y=2x−5, B) x2+y2=1, C) x=20−2y, D) y=10−x2−−−−−−√, E) y=2x2−3x+4 and F) y=|x| How many of these relations …
9. ### Calculus

Find all values of a and b so that the following function is continuous for all x ∈ R. f(x) = −3a + 4x^5(b) x ≤ −1 ax − 2b −1 < x < 1 3x^2 − bx + a x ≥ 1
10. ### Calculus (Need help)

Not sure how do do this. Please help? Find all values of a and b so that the function is continuous for all x E R. f(x)= −3a + 4(x^5)b x ≤ −1 { ax − 2b −1 < x < 1 3x^2 − bx + a x ≥ 1

More Similar Questions