# Calculus

posted by .

Evaluate the following definite integral:

integral at a = -1, b=2

-4dx/(9x^2+30x+25)

Would I have to separate them in 3 terms as:

-4 ∫1/9x^2 + ∫1/30x + ∫1/25

resulting in: -4/(3x^3)+ (15x^2)+ C?

and from there I can replace a and b

f(a) - f(b)?

Thank you

• Calculus -

Booo!

1/(a+b+c) is NOT 1/a + 1/b + 1/c

What you need to do is let

u = 3x+5 and you have
du = 3 dx, so dx = du/3
x in [-1,2] means u in [2,11]
giving you
∫[2,11] -4/u^2 du/3
-4/3 ∫[2,11] u^-2 du

That should be ever so simple.

• Calculus -

THanks Steve, but why 3x+5??

• Calculus -

because you have 9x^2 + 30x + 25 = (3x+5)^2

## Similar Questions

1. ### Calculus

Evaluate the triple integral ∫∫∫_E (x)dV where E is the solid bounded by the paraboloid x=10y^2+10z^2 and x=10
2. ### Calculus

Evaluate the triple integral ∫∫∫_E (x+y)dV where E is bounded by the parabolic cylinder y=5x^2 and the planes z=9x, y=20x and z=0.
3. ### Calculus

Evaluate the triple integral ∫∫∫_E (xy)dV where E is the solid tetrahedon with vertices (0,0,0), (4,0,0), (0,1,0), (0,0,4)
4. ### Calculus

Evaluate the triple integral ∫∫∫_E (z)dV where E is the solid bounded by the cylinder y^2+z^2=1225 and the planes x=0, y=7x and z=0 in the first octant.
5. ### COLLEGE CALCULUS. HELP!

Evaluate the definite integral ∫(0,2) (x-1)^25 dx.. thats how i got stuck u=x-1, then du=dx =∫(0,2) u^25du =(1/26)u^26. i don't know what to do with integral (2,0)..
6. ### Calculus 2 correction

I just wanted to see if my answer if correct the integral is: ∫(7x^3 + 2x - 3) / (x^2 + 2) when I do a polynomial division I get: ∫ 7x ((-12x - 3)/(x^2 + 2)) dx so then I use u = x^2 + 2 du = 2x dx 1/2 du = x dx = ∫7x …
7. ### Calculus

Alright, I want to see if I understand the language of these two problems and their solutions. It asks: If F(x) = [given integrand], find the derivative F'(x). So is F(x) just our function, and F'(x) our antiderivative?
8. ### Calculus III

Use symmetry to evaluate the double integral ∫∫R(10+x^2⋅y^5) dA, R=[0, 6]×[−4, 4]. (Give your answer as an exact number.) ∫∫R(10+x^2⋅y^5) dA=
9. ### calculus

a) Let f(z) = z^2 and γ(t) = 1 + it^3, t ∈ [0,1]. i) Write out the contour integral ∫γ f(z)dz as an integral with respect to t. You do not need to evaluate this integral. ii) Evaluate the integral ∫0,1+i …
10. ### Calculus II

So I'm trying to integrate a function using partial fractions. Here is the integral of interest: ∫(3x^2+5x+3)/[(x+2)(x^2+1)]dx. Since the numerator's degree of the polynomial is lesser than that of the denominator's degree, it …

More Similar Questions