Calculus
posted by Cynthia .
to evaluate (integral) 3x^2 cos (2x^34) dx, it is necessary to let
A. u=3x^2
B. u=6x
C. u=2x^34
D. u=6x^2

C
then du = 2(3x^2) dx
Respond to this Question
Similar Questions

Integral
That's the same as the integral of sin^2 x dx. Use integration by parts. Let sin x = u and sin x dx = dv v = cos x du = cos x dx The integral is u v  integral of v du = sinx cosx + integral of cos^2 dx which can be rewritten integral … 
Calculus II
Evaluate using usubstitution: Integral of: 4x(tan(x^2))dx Integral of: (1/(sqrt(x)*x^(sqrt(x))))dx Integral of: (cos(lnx)/x)dx 
Calculus
I have two questions, because I'm preparing for a math test on monday. 1. Use the fundamental theorem of calculus to find the derivative: (d/dt) the integral over [0, cos t] of (3/5(u^2))du I have a feeling I will be able to find … 
calculus
Evaluate the indefinite integral. integral of 8 sin^4 x cos x dx 
Calculus
Evaluate the integral. S= integral sign I= absolute value S ((cos x)/(2 + sin x))dx Not sure if I'm doing this right: u= 2 + sin x du= 0 + cos x dx = S du/u = ln IuI + C = ln I 2 + sin x I + C = ln (2 + sin x) + C Another problem: … 
Calculus
Evaluate the integral sin4x cos^2 4x dx A. cos^3 4x/3 +C B.  cos^3 4x/3 +C C. cos^3 4x/12 +C D. cos^3 4x/12 +C 
Calculus
Evaluate (Integral) sin 4x cos^2 4x dx. A. Cos^3(4x)/3 + C B. Cos^3(4x)/3 + C C. Cos^3(4x)/12 + C D. Cos^3(4x)/12 + C 
Calculus
Use the identity sin^2x+cos^2x=1 and the fact that sin^2x and cos^2x are mirror images in [0,pi/2], evaluate the integral from (0pi/2) of sin^2xdx. I know how to calculate the integral using another trig identity, but I'm confused … 
Calculus
Use the identity sin^2x+cos^2x=1 and the fact that sin^2x and cos^2x are mirror images in [0,pi/2], evaluate the integral from (0pi/2) of sin^2xdx. I know how to calculate the integral using another trig identity, but I'm confused … 
Calculus
Evaluate the definite Integral Integral [0 to pi/4] cos(2x)sec^2(pi/4 sin(2x))dx