Differential Equations

posted by .

Solve the differential equation below with initial conditions. Compute the first 6 coefficient. Find the general pattern.

(1-x)y"-y'+xy=0 y(0)=1, y'(0)=1

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Differential Equations

    Find the general solution of the differential equation specified. 1) dy/dt= 1/(ty+1+y+1) 2) dy/dx=sec y I got y(x)=arcsin(x) for the second one. I'm not sure what to do with the first one.
  2. calculus-differential equation

    Consider the differential equation: (du/dt)=-u^2(t^3-t) a) Find the general solution to the above differential equation. (Write the answer in a form such that its numerator is 1 and its integration constant is C). u=?
  3. Differential Equations

    Solve the seperable differential equation for U. du/dt = e^(5u+7t) - Using the following initial condition U(0) = 12
  4. Differential Equations

    The velocity v of a freefalling skydiver is well modeled by the differential equation m*dv/dt=mg-kv^2 where m is the mass of the skydiver, g is the gravitational constant, and k is the drag coefficient determined by the position of …
  5. PLEEEEEAAAASE HELP WITH DIFFERENTIAL EQ PROBLEMS!!

    1) What are the equilibrium solutions to the differential equation and determine if it is stable or unstable with the initial condition y(-4)=1: 0.1(y+2)(4-y) 2) Use Euler's method with step size=0.5 and initial condition y(0)=3 to …
  6. Differentail Equations

    I cant figure out how to do this type of problem! Consider the first order differential equation y′+(x/(x^2−4))y=(e^x)/(x−9) For each of the initial conditions below, determine the largest interval a<x<b on …
  7. Differential Equations

    in this problem we consider an equation in differential form M dx+N dy=0 (2y-2xy^2)dx+(2x-2x^2y)dy=0 give implicit general solutions to the differential equation. F(x,y)=
  8. ordinary differential equation

    consider the differential equation d^3x/dt^3 - 9(d^2x/dt^2)+ 27(dx/dt) -27x = c0s t +sin t + te^(3t) a) show that characteristic equation of the differential equation is (m-3)^3 =0 (b) Hence, find the general solution of the equation.
  9. Calculus - Differential Equations

    Use separation of variables to find the solution to the differential equation: 4 (du/dt) = u^2, subject to the initial condition u(0)=6.
  10. Calculus - Differential Equations

    Use separation of variables to find the solution to the differential equation: 4 (du/dt) = u^2, subject to the initial condition u(0)=6. So far, I have: 4 du = u^2 dt 4/u^2 du = dt -4/u = t+C I am unsure what to do from this point...

More Similar Questions