Calculus - please check my work

posted by .

differentiate each function

a) y = cos^3x

b) y = sin(x^3)

c) y = sin^2 xcos3x

my answers:

a) y' = 3cos^2 x(-sinx)

b) y' = cos(x^3)(3x^2)

c) for this one, i don't know which one is correct. i got 2 different answers but i think they may be the same.. im not sure, i did it twice and got 2 diff answers, please let me know which is right or if they are both wrong. first answer for c: y' = 2sinxcosxcos3x + 3cos2x(-sinx)sin^2x or 2nd answer for c: y' = 2sinxcosxcos3x + (-sin3x)(3)(sin^2x)

thank you

  • Calculus - please check my work -

    c) y = sin^2 xcos3x
    y' = sin^2 x (-3 sin 3x) + cos 3x (2 sin x cos x)
    That is your second answer. Your first answer has a cos 2x in it which comes from where I do not know.

  • Calculus - please check my work -

    thank you

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. Mathematics - Trigonometric Identities

    Let y represent theta Prove: 1 + 1/tan^2y = 1/sin^2y My Answer: LS: = 1 + 1/tan^2y = (sin^2y + cos^2y) + 1 /(sin^2y/cos^2y) = (sin^2y + cos^2y) + 1 x (cos^2y/sin^2y) = (sin^2y + cos^2y) + (sin^2y + cos^2y) (cos^2y/sin^2y) = (sin^2y …
  2. Mathematics - Trigonometric Identities

    Prove: sin^2x - sin^4x = cos^2x - cos^4x What I have, LS = (sinx - sin^2x) (sinx + sin^2x) = (sinx - 1 -cos^2x) (sinx + 1 - cos^2x) = sin^2x + sinx - sinx - cos^2xsinx - cos^2xsinx - 1 - 1 + cos^4x = sin^2x - 2cos^2xsinx - 2 + cos^4x …
  3. TRIG!

    Posted by hayden on Monday, February 23, 2009 at 4:05pm. sin^6 x + cos^6 x=1 - (3/4)sin^2 2x work on one side only! Responses Trig please help! - Reiny, Monday, February 23, 2009 at 4:27pm LS looks like the sum of cubes sin^6 x + cos^6 …
  4. calculus

    Could someone check my reasoning? thanx Find the derivative of the function. sin(sin[sinx]) I need to use the chain rule to solve. So I take the derivative sin(sin[sinx) first. Then multiply that by the inside which is the derivative
  5. Calculus 12th grade (double check my work please)

    1.)Find dy/dx when y= Ln (sinh 2x) my answer >> 2coth 2x. 2.)Find dy/dx when sinh 3y=cos 2x A.-2 sin 2x B.-2 sin 2x / sinh 3y C.-2/3tan (2x/3y) D.-2sin2x / 3 cosh 3yz...>> my answer. 2).Find the derivative of y=cos(x^2) …
  6. Calc.

    Differentiate. y= (cos x)^x u= cos x du= -sin x dx ln y = ln(cos x)^x ln y = x ln(cos x) (dy/dx)/(y)= ln(cos x) (dy/dx)= y ln(cos x) = (cos x)^x * (ln cos x) (dx/du)= x(cos x)^(x-1) * (-sin x) = - x sin(x)cos^(x-1)(x) (dy/dx)-(dx/du)= …
  7. calculus

    Differentiate. y= (cos x)^x u= cos x du= -sin x dx ln y = ln(cos x)^x ln y = x ln(cos x) (dy/dx)/(y)= ln(cos x) (dy/dx)= y ln(cos x) = (cos x)^x * (ln cos x) (dx/du)= x(cos x)^(x-1) * (-sin x) = - x sin(x)cos^(x-1)(x) (dy/dx)-(dx/du)= …
  8. Calculus

    differentiate each function a) y = cos^3x b) y = sin(x^3) c) y = sin^2 xcos3x
  9. Calculus

    Integrate 1/sinx dx using the identity sinx=2(sin(x/2)cos(x/2)). I rewrote the integral to 1/2 ∫ 1/(sin(x/2)cos(x/2))dx, but I don't know how to continue. Thanks for the help. Calculus - Steve, Tuesday, January 12, 2016 at 12:45am …
  10. Trigonometry

    Solve the equation for solutions in the interval 0<=theta<2pi Problem 1. 3cot^2-4csc=1 My attempt: 3(cos^2/sin^2)-4/sin=1 3(cos^2/sin^2) - 4sin/sin^2 = 1 3cos^2 -4sin =sin^2 3cos^2-(1-cos^2) =4sin 4cos^2 -1 =4sin Cos^2 - sin=1/4 …

More Similar Questions