trig

posted by .

Given sin a = 15/17 with a in Quadrant I and cos beta = 4/5 with beta in QuandrantIV, find the exact value of cos(a+beta)

  • trig -

    sin a = 15/17 , with a in I, so cos a = 8/17

    cos b = 4/5, with b in IV, then sin b = -3/5

    cos(a+b) = cosa cosb - sina sinb
    = (8/17)(4/5) - (15/17)(-3/5)
    = (32 + 45)/85
    = 77/85

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. math

    How would you establish this identity: (1+sec(beta))/(sec(beta))=(sin^2(beta))/(1-cos(beta)) on the right, sin^2 = 1-cos^2, that factor to 1-cos * `1+cos, then the denominator makes the entire right side 1+cosB which is 1+1/sec which …
  2. Pre Calc.

    Use the sum or difference identity to find the exact value of sin255 degrees. My answer: (-sqrt(2)- sqrt(6)) / (4) Find the value of tan (alpha-beta), if cos alpha= -3/5, sin beta= 5/13, 90<alpha<180, and 90<beta<180. My …
  3. trig

    verify the identity: sec(beta)+ tan (beta)= cos(beta)/ 1-sin(beta)
  4. pre calc

    suppose beta is an angle in the second quadrant and tan beta=-2. Fine the exact vaule of sin beta and cos beta
  5. Pre-Calculus

    If sin(theta)=15/17 and cos(beta)=(-5/13 (both theta and beta are in quadrant II) find tan(theta+beta)
  6. Math

    Given that sin alpha=4/sqrt65, pi/2<alpha<pi, and cos beta=-3/sqrt13, tan beta>0, find the exact value of tan(alpha+beta)
  7. Trigonometry

    Prove that tan (Beta) sin (Beta) + cos (Beta) = sec (Beta) Please explain.
  8. Trigonometry

    Find the exact value of tan2(Beta) if sin(Beta) = 5/13 (Beta in Quadrant II)
  9. Trigonometry

    Find the exact value of tan2(Beta) if sin(Beta) = 5/13 (Beta in Quadrant II)
  10. trig

    evaluate the following in exact form, where the angeles alpha and beta satisfy the conditions: sin alpha=4/5 for pi/2 < alpha < pi tan beta=7/24 for pie < beta < 3pi/2 answer choices A. sin(beta+alpha) B. tan(beta-alpha) …

More Similar Questions