# calculus

posted by .

Verify the identity:

(tanx+1)/(secx+cscx) = sinx

• calculus -

multiply through by sec+csc to get

tan+1 = sin(sec+csc)
= sinsec + sincsc
= tan + 1

• calculus -

LS= (sinx/cosx + 1)/(1/cosx + 1/sinx)
= [(sinx + cosx)/cosx] / [ (sinx + cosx)/(sinxcosx)]
= (sinx+ cosx)/cosx * (sinxcosx)/(sinx+cosx)
= sinxcosx/cosx
= sinx
= RS

## Similar Questions

1. ### Trig

Verify that (secx/sinx)*(cotx/cscx)=cscx is an identity. (x=theta BTW)
2. ### drwls

My previous question: Verify that (secx/sinx)*(cotx/cscx)=cscx is an identity. (secx/sinx)*(cotx/cscx) = (secx/cscx)(cotx/sinx) = (sinx/cosx)*cotx*(1/sinx) "The last steps should be obvious" Not to me. I can convert (sinx/cosx) to …
3. ### Pre-Calculus

Find a numerical value of one trigonometric function of x if tanx/cotx - secx/cosx = 2/cscx a) cscx=1 b) sinx=-1/2 c)cscx=-1 d)sinx=1/2
4. ### Precalculus

Complete the following identity secx-1/secx=?
5. ### Trig Help

Prove the following: [1+sinx]/[1+cscx]=tanx/secx =[1+sinx]/[1+1/sinx] =[1+sinx]/[(sinx+1)/sinx] =[1+sinx]*[sinx/(sinx+1)] =[sinx+sin^2x]/[sinx+1] =[sinx+(1-cos^2x)]/[sinx+1] =?
6. ### calculus

Verify the Identity: (Tanx + 1)/(secx + cscx) = sinx
7. ### Trig

verify the following identity: tanx+cotx/cscx=secx