# Polar equations

posted by .

write the polar eqaution
3 = r cos (theta - 315)
in rectangular form.

• Polar equations -

3=r cos(a-315)
where theta=a
now 315=360-45=2pi-pi/4=-pi/4
therefore, -315=+pi/4
therefore,3=r cos(a-315)becomes
3=r cos(a+pi/4)
but cos(a+pi/4)= cosa*cospi/4 - sina*sinpi/4

• Polar equations -

3=r cos(a-315)
where theta=a
now 315=360-45=2pi-pi/4=-pi/4
therefore, -315=+pi/4
therefore,3=r cos(a-315)becomes
3=r cos(a+pi/4)
but cos(a+pi/4)= cosa*cospi/4 - sina*sinpi/4
= 1/root2(cosa-sina)
3= 1/root2(rcosa-rsina)
= 1/root2 (x-y)
3root2=x-y
y = x-3root2 is an equation of line

## Similar Questions

1. ### math

put these polar equations into cartesians form: 1) theta=135 degrees 2)rcostheta=-1 for #1 is it like: (-1,1)?
2. ### calculus

for what value of r=4sinè have vertical tangent?
3. ### Polar to Rectangular Form

The letters r and theta represent polar coordinates. Write each equation in rectangular coordinates (x, y) form. Let t = theta (1) r = sin(t) + 1 (2) r = sin(t) - cos(t)
4. ### PRECALCULUS

convert the polar equation to rectangular form. 1.) r sec(theta) = 3 2.) r = 4 cos(theta) - 4 sin(theta) convert from rectangular equation to polar form. 1.) x^2 + (y-1)^2 = 1 2.) (x-1)^2 + (y+4)^2 = 17

convert the polar equation to rectangular form. 1.) r sec(theta) = 3 2.) r = 4 cos(theta) - 4 sin(theta) convert from rectangular equation to polar form. 1.) x^2 + (y-1)^2 = 1 2.) (x-1)^2 + (y+4)^2 = 17

1.Graph the polar equation r=3-2sin(theta) 2. Find the polar coordinates of 6 radical 3,6 for r > 0. 3. Find the rectangular coordinates of (7, 30°). 4. Write the rectangular equation in polar form. (x – 4)2 + y2 = 16 5. Write …