Heat Transfer
posted by Lauren .
A factory would like to produce plain carbon steel strips with pieces of
polyethylene plastic ﬁlm bonded on them. The bonding operation will use a
laser that is already available to provide a constant heat ﬂux of q′′0= 85, 000 W/m2for a speciﬁed period of time, ∆ton, across the top surface of the thin
adhesivebacked ﬁlm, to be aﬃxed to the metal strip as shown in the sketch.
The metal strip has a thickness D = 1.25 mm, length L = 600 mm, and width
W = 600 mm. The plastic ﬁlm is perfectly centered on the metal strip and has
thickness d = 0.1 mm, length l = 44 mm, and width w = 500 mm. The heat
ﬂux is applied over the strip’s complete width of 600 mm. The strip is initially
at the ambient temperature of 25◦C and located on a conveyor belt made of an
insulating open mesh material so that the upper and lower surfaces of the strip(including the plastic ﬁlm) are exposed to air blowing as shown along the length of the plate at 10 m/s.
In order for the ﬁlm to be satisfactorily bonded it must be cured above 90◦C for 10 s and the plastic ﬁlm will degrade if a temperature of 200◦C is exceeded. Determine the minimum period of time ∆ton necessary for proper curing and thus optimize productivity of the metal strips, since each strip will have to remain stationary under the laser during the bonding operation.
All modes of heat transfer must be considered, and any assumption must
be justiﬁed. If a computer program is necessary, the accuracy of the program
as well as the results need to checked. For example, it may be possible to
check the program by comparing numerical results using diﬀerent resolutions
to show grid convergence, and against analytical results, obtained for some
limiting situations (e.g. steady state), to show correctness of the program. Your
report will be graded on the basis of the physical understanding exhibited, the execution of the project, and the clarity of the writing and reasoning presented.
Respond to this Question
Similar Questions

PHY 2054
Use the relativistic coordinate transformation (x, y, z, t) − (x′, y′, z′, t′) shown and given below where the latter frame S′, (x′, y′, z′, t′), has a velocity 2.69813 × … 
College Physics
Use the relativistic coordinate transformation (x, y, z, t) − (x′, y′, z′, t′) shown and given below where the latter frame S′, (x′, y′, z′, t′), has a velocity 2.69813 × … 
Differenctial equations
Use the change of variable x = exp(s) to recast the differential equation xy′′+y′+(L/x)y=0 Please HELP ME 
geometry
ABCD is a parallelogram. Let C′ be a point on AC extended such that the length of AC′=1.2AC. Let D′ be on the segment BD such that the length of BD′=0.9BD. The ratio of the area of the quadrilateral ABC′D′ … 
Calculus
A table of values for f,g,f′, and g′ are given in the table below: x f(x) g(x) f′(x) g′(x) 5 0 4 9 5 0 5 0 6 9 4 5 5 9 5 If h(x)=f(g(x)), find h′(5), If H(x)=g(f(x)), find H′(0) 
physics
Consider the two observers O and O′ at the origins of the frames of reference S and S′ respectively, which are in relative motion at constant velocity v along the xaxis as illustrated in figure TMA 1_Fig1. Suppose the … 
Physics
An ideal gas starts in state A at temperature T. The gas expands to new volume V by an adiabatic process and its final temperature is T′. What is the relationship between T and T′? 
Calculus
Find the xcoordinates of any relative extrema and inflection point(s) for the function f(x) = 3x^(1/3) + 6x^(4/3). Please use an analysis of f ′(x) and f ′′(x). 
math
Polygon MNOPQ is dilated by a scale factor of 0.8 with the origin as the center of dilation, resulting in the image M′N′O′P′Q′. The coordinates of point M are (2, 4), and the coordinates of point N are … 
Gemotery
Polygon MNOPQ is dilated by a scale factor of 0.8 with the origin as the center of dilation, resulting in the image M′N′O′P′Q′. The coordinates of point M are (2, 4), and the coordinates of point N are …