physics
posted by anthony .
A 40kg block of ice at 0°C is sliding on a horizontal surface. The initial speed of the ice is 7.0 m/s and the final speed is 4.7 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0°C.

Compute the kinetic energy loss. That equals the heat generated by friction.
KE loss = Q = (M/2)[7.0^2  4.7^2]
= 538 J = 128.6 calories
Divide that by the heat of fusion (80 cal/g) for the mass that melts (in grams). 
Q=KE= 1/2(M){Vf^2Vi^2}=.5*40(4.7^27^2)=538.2J
Mass melted=538.2/33.5*10^4=1.6*10^3kg
Respond to this Question
Similar Questions

Physics B
A 40kg block of ice at 0°C is sliding on a horizontal surface. The initial speed of the ice is 7.0 m/s and the final speed is 4.7 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated … 
physics
An 8.56 kg block of ice at 0 degrees celsius is sliding on a rough horizontal icehouse floor (also at 0 degrees celsius) at 15.6 m/s. Assume that half of any heat generated goes into the floor and the rest goes into the ice. How much … 
physics
A block of ice at 0°C whose mass initially is m = 12.5 kg slides along a horizontal surface, starting at a speed vo = 4.10 m/s and finally coming to rest after traveling a distance d = 10.07 m. Compute the mass of ice melted as a … 
physics
A 2.5 kg block of ice at a temperature of 0.0 degrees Celcius and an initial speed of 5.7 m/s slides across a level floor. If 3.3 x 10^5 J are required to melt 1.0 kg of ice, how much ice melts, assuming that the initial kinetic energy … 
physics
A block of ice of mass 4.10 kg is placed against a horizontal spring that has force constant k = 210 N/m and is compressed a distance 2.60×10−2 m. The spring is released and accelerates the block along a horizontal surface. … 
physics
A 2.6 kg block of ice at a temperature of 0.0C and an initial speed of 5.3 m/s slides across a level floor. If 3.3 × 105 J are required to melt 1.0 kg of ice, how much ice melts, assuming that the initial kinetic energy of the ice … 
Physics
A 2.5 kg block of ice at a temperature of 0C and an initial speed of 5.7 m/s slides across a level floor. If 3.3*10^5 J are required to melt 1.0 kg of ice, how much ice melts, assuming that the initial kinetic energy of the ice block … 
physics
A block of ice at 0°C whose mass initially is m = 48.4 kg slides along a horizontal surface, starting at a speed vo = 4.91 m/s and finally coming to rest after traveling a distance d = 12.28 m. Compute the mass of ice melted as a … 
General Physics
A block sliding on a horizontal surface has an initial speed of 0.5 m/s. The block travels a distance of 1 m as it slows to a stop. What distance would the block have traveled if its initial speed had been 1 m/s? 
physics
A 63.8 kg block of silver is at initially at 107 C. 1.0 kg of ice at its freezing point is placed onto the block to cool it. As the ice melts, the water is free to flow off (so that the water never increases in temperature). After …