calculus

posted by .

verify that y=C1e^2x + C2e^-3 is a solution of the differential equation y''+y'-6y=0

  • calculus -

    Go on: wolframalpha dot com

    When page be open in rectangle type:

    solve y''+y'-6y=0

    and click option =


    After few seconds when you see result click option:

    Show steps

Respond to this Question

First Name
School Subject
Your Answer

Similar Questions

  1. calculus-differential equation

    Consider the differential equation: (du/dt)=-u^2(t^3-t) a) Find the general solution to the above differential equation. (Write the answer in a form such that its numerator is 1 and its integration constant is C). u=?
  2. calculus differential equation

    Find in implicit form the general solution of differential equation dy/dx=2(e^x-e^-x)/y^2(e^x+e^-x)^4 with (y>0). I know this requires a seperation of variables but I beyond that I am confused by how.Thanks.
  3. calculus differential equation

    Find in implicit form the general solution of differential equation dy/dx=2(e^x-e^-x)/y^2(e^x+e^-x)^4 with (y>0). I know this requires a seperation of variables but I beyond that I am confused by how.Thanks.
  4. AB Calculus

    So I'm supposed to verify the solution of the differential equation. The solution is y=e^(-x). The differential equation is 3y' + 4y = e^(-x). What is the problem asking me to do here?
  5. calculus

    verify that y=c/x^2 is a general solution of the differential equation y'+(2/x) y=0-6y=0 then find a particular solution of the differential equation that satisfies the side condition y(1)=2
  6. Calculus

    Which of the following is a separable, first-order differential equation?
  7. Differential equations in Calculus...plsssss help?

    Suppose that represents the temperature of a cup of coffee set out in a room, where T is expressed in degrees Fahrenheit and t in minutes. A physical principle known as Newton’s Law of Cooling tells us that dT/dt = -1/15T+5 15T + …
  8. Physics

    Verify that the formula u(t)=Acos(ωo*t+Φ) is a solution to the differential equation for the mass on a spring, by plugging this expression for u(t) directly into the differential equation: d^2u/dt^2+ωo^2*u=0.
  9. Calculus

    Consider the differential equation dy/dx = x^4(y - 2). Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 0. Is this y=e^(x^5/5)+4?
  10. Calculus

    Consider the differential equation dy/dx = x^2(y - 1). Find the particular solution to this differential equation with initial condition f(0) = 3. I got y = e^(x^3/3) + 2.

More Similar Questions