# Calculus

posted by .

If m ≤ f(x) ≤ M for a ≤ x ≤ b, where m is the absolute minimum and M is the absolute maximum of f on the interval [a, b], then m(b − a) ≤ b f(x) dx a≤ M(b − a).
Use this property to estimate the value of the integral.

The integral from 0 to 2 of 1/1+x^2

• Calculus -

nlk

## Similar Questions

1. ### Algebra 2

Solve. 4a-2≤a+1≤3a+4 4a-2-1≤a+1-1≤3a+4-1 4a-3-3≤a≤3a+3-3 4a/3-6/3≤a≤3a/3 4a/3(1/a)-2≤a≤a(1/a) 4/3-6≤a≤1 I got lost at this part. I'm not sure what to do now, if …
2. ### Calculus

If m ≤ f(x) ≤ M for a ≤ x ≤ b, where m is the absolute minimum and M is the absolute maximum of f on the interval [a, b], then m(b − a) ≤ b f(x) dx a≤ M(b − a). Use this property to estimate …

Determine the absolute extrema of each function on the given interval. Illustrate your results by sketching the graph of each function. a)  =  − 4 + 3 , 0 ≤  ≤ 3 b)  =  − 1 , 0 ≤  ≤ …

Determine the absolute extrema of each function on the given interval. Illustrate your results by sketching the graph of each function. a) f(x) = x^2 − 4x + 3 , 0 ≤ x ≤ 3 b) f(x) = (x − 1)^2 …

Determine the absolute extrema of each function on the given interval. Illustrate your results by sketching the graph of each function. a) f(x) = x^2 − 4x + 3 , 0 ≤ x ≤ 3 b) f(x) = (x − 1)^2 …

Determine the absolute extrema of each function on the given interval. Illustrate your results by sketching the graph of each function. a) f(x) = x^2 − 4x + 3 , 0 ≤ x ≤ 3 b) f(x) = (x − 1)^2 …
7. ### algebra 1 help please

4) a student score is 83 and 91 on her first two quizzes. write and solve a compound inequality to find possible values for a thord quiz score that would give anverage between 85 and 90. a. 85≤83+91+n/3 ≤90; 81≤n≤96 …
8. ### PRE - CALCULUS

Eliminate the parameter t. Find a rectangular equation for the plane curve defined by the parametric equations. x = 6 cos t, y = 6 sin t; 0 ≤ t ≤ 2π A. x2 - y2 = 6; -6 ≤ x ≤ 6 B. x2 - y2 = 36; -6 ≤ …
9. ### Differentials (calc)

Solve the Poisson equation ∇^2u = sin(πx) for 0 ≤ x ≤ 1and 0 ≤ y ≤ 1 with boundary conditions u(x, 0) = x for 0 ≤ x ≤ 1/2, u(x, 0) = 1 − x for 1/2 ≤ x ≤ 1 and 0 everywhere …
10. ### Calculus

f is a continuous function with a domain [−3, 9] such that f(x)= 3 , -3 ≤ x < 0 -x+3 , 0 ≤ x ≤ 6 -3 , 6 < x ≤ 9 and let g(x)= ∫ f(t) dt where a=-2 b=x On what interval is g increasing?

More Similar Questions